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h i g h l i g h t s

• An iterative algorithm is developed to fill a triangular mesh with an all-hex mesh.
• The Jacobian values of the all-hex mesh are guaranteed to be positive.
• The convergence of the iterative algorithm is proved.
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a b s t r a c t

The hexahedral mesh (hex mesh) is usually preferred to the tetrahedral mesh (tet mesh) in finite ele-
ment methods for numerical simulation. In finite element analysis, a valid hex mesh requires that the
scaled Jacobian value at each mesh vertex is larger than 0. However, the hex mesh produced by lots of
prevailing hex mesh generation methods cannot be guaranteed to be a valid hex mesh. In this paper, we
develop a constrained volume iterative fitting (CVIF) algorithm to fill a given triangular mesh model with
an all-hex volume mesh. Starting from an initial all-hex mesh model, which is generated by voxelizing
the given triangular mesh model, CVIF algorithm fits the boundary mesh of the initial all-hex mesh to
the given triangular mesh model by iteratively adjusting the boundary mesh vertices. In each iteration,
the movements of the boundary mesh vertices are diffused to the inner all-hex mesh vertices. After the
iteration stops, an all-hex volume mesh that fills the given triangular mesh model can be generated. In
the CVIF algorithm, the movement of each all-hex mesh vertex is constrained to ensure that the scaled
Jacobian value at eachmesh vertex is larger than 0, etc. Therefore, the all-hexmesh generated by the CVIF
algorithm is guaranteed to be a valid all-hex mesh.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In finite element methods for numerical simulation, the hex-
ahedral mesh (hex mesh) is usually preferred to the tetrahedral
mesh (tet mesh) owing to the reduced error and smaller num-
ber of elements [1,2]. However, generating a hex mesh with desir-
able qualities often requires significant geometric decomposition.
Therefore, hex mesh generation can be extremely difficult to per-
form and automate. As a result, it requires considerable user inter-
actions andmay require days or evenweeks in the case of complex
shapes [3].

Moreover, it is well known that a valid hex mesh in finite ele-
ment analysis should satisfy the requirement that, the scaled Jaco-
bian value at each mesh vertex is larger than 0 [4]. Unfortunately,
there is little work which can generate an all-hex mesh with the
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quality guarantee stated above. On the other hand, though bound-
ary representation models, especially triangular mesh models, are
popular in current computer graphics and computer aided design
applications, lots of existing all-hex mesh generation algorithms
need a tet mesh model as an input [5,6]. So they cannot handle tri-
angular mesh models directly, and it is inconvenient.

In this paper, we develop a constrained volume iterative fitting
algorithm (abbr. CVIF) which can fill a given triangular mesh
model using an all-hex volumemesh, with guaranteed quality that
the scaled Jacobian value at each mesh vertex is larger than 0.
Given a triangular mesh model, we first construct an initial all-
hex mesh model by voxelizing the given model, and extract the
boundary quadrilateral mesh of the initial all-hex mesh model.
Then, the initial all-hexmeshmodel is fitted to the given triangular
mesh model by the CVIF algorithm. In each iteration of the CVIF
algorithm, there are two steps:
(i) The adjustment of the vertices of the boundary quadrilateral

mesh, and
(ii) the diffusion of the movement of the boundary mesh vertices

to the inner mesh vertices.
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In the above two steps, the movement of the mesh vertices is so
constrained that the scaled Jacobian value at each mesh vertex
after movement is larger than 0. In this way, the mesh quality of
the all-hex mesh generated by our algorithm is guaranteed.

Specifically, the iterative adjustments of the boundary quadri-
lateral mesh vertices make up of the constrained surface iterative
fitting algorithm (abbr. CSIF), and we show its convergence in this
paper.

The structure of this paper is as follows. In Section 2, we briefly
review related work. In Section 3, we develop the constrained
volume iterative fitting algorithm. After presenting some results
and discussions in Section 4, we conclude the paper in Section 5.

2. Related work

In this section, we will briefly review previous work related to
our method, including hex mesh generation, subdivision fitting,
and volume subdivision.

Hex mesh generation: There is a great deal of literature on the
generation of volumemeshes including tet [7,8] andhexmeshes. In
this paper, we focus on hex mesh generation. According to Owen’s
classification [9], hexmesh generationmethods can be categorized
into three classes, i.e., direct, indirect, and structured methods.
Usually, the quality of the generated hex volume mesh should be
improved by postprocessing [10,11].

Starting with a quadrilateral boundary surface mesh, direct
methods generate a hexahedron for each quadrilateral according to
a heuristically advancing-front approach. However, when the algo-
rithmic heuristics are exhausted, no additional hexahedra can be
placed. Consequently, this will leave void regions in the generated
hex mesh [12,13].

Indirect methods first generate a tet mesh, and then convert it
to a hex mesh by tetrahedral decomposition or combination. The
disadvantage of these methods is that the quality of resultant hex
mesh can be very poor owing to the high valence nodes [14,15].

A structured hex mesh is a mesh whose inner vertex valence
is only six. A popular structured method for hex mesh generation
is known as mapping [16], by which a map from the given solid
with six surfaces to a cuboid is constructed. A cuboid has a trivial
hex mesh, and the hex mesh in the given solid can be generated
by inverse mapping. Although the mapping method can generate
a high-quality hex mesh, it can only deal with solids of relatively
simple shape, i.e., those with six boundary surfaces.

To deal with complex solids, a submapping method has been
developed [17]. This submapping algorithm decomposes the given
solid into separate mappable subregions while ensuring that the
constraints within each subregion are consistent with the adjacent
subregions.

The recently proposed hex mesh generation methods based on
the PolyCube are also submapping methods that focus on the con-
struction of the mapping [5]. A PolyCube [18] is a solid formed by
combining a number of cubes with the same orientation; hence, it
has a trivial hex mesh. By devising a mapping between the Poly-
Cube and the input model, the sub-mapping method transfers the
hex mesh in the PolyCube to the input model. Therefore, the qual-
ity of the hex mesh is heavily related to the shape of the PolyCube
and the mapping.

In [19], the method of fundamental solutions is employed to
design a harmonic volumetric mapping. In [20], the given model
is first decomposed into the direct product of a surface and curve
and then parameterized; subsequently, the mapping between the
model and the PolyCube is constructed. Moreover, a volumetric
deformation method is utilized to construct the correspondence
between the given model and its PolyCube [6]. However, comput-
ing the PolyCube as well as a low-distortion mapping between it
and the given model for general shapes remains an open problem

[20,21]. Recently, some work is devoted to calculate a desirable
polycube. In Ref. [22], the polycube is constructed using a varia-
tional method, by deforming an input triangle mesh throughmini-
mizing the l1 norm of the mesh normals. In Ref. [23], a constrained
discrete optimization technique is developed to make the gener-
ated polycube balance parameterization distortion against singu-
larity count.

It should be pointed out that, though the mapping and sub-
mapping methods can produce high quality hex mesh, they need a
tet mesh as input. Therefore, themapping and sub-mappingmeth-
ods cannot be employed directly to transform a triangular mesh
model into an all-hex mesh.

On the other hand, some hexmesh generationmethods employ
the frame field to guide the construction ofmapping from the input
tet mesh to the resulted hex mesh [24–26].

For more work on hex mesh generation, we refer the reader to
excellent surveys [1,9].

Subdivision surface fitting: The limit surface of approximating
subdivision schemes, such as Catmull–Clark scheme [27] will
shrink, especially when the initial control mesh is sparse. Usually,
this problem is solved by making the approximating subdivision
surface fit the vertices of the initial mesh, by either global
methods [28], or local methods [29].

Recently, some new methods, such as progressive interpolation
(abbr. PI) and geometric interpolation (abbr. GI), have been pro-
posed for subdivision surface fitting. They adjust the vertices of the
control mesh iteratively, depending on either parametric distance
in PI or geometric distance in GI, and the limit subdivision surface
fits the initial mesh. The convergence of PI has been shown for the
Loop [30], Doo–Sabin [31], andCatmull–Clark schemes [32]. On the
other hand, Ref. [33] develops a geometric interpolation algorithm
for the Loop subdivision scheme. Moreover, Ref. [34] presents a
geometric approximation algorithm for the Loop subdivision sur-
face by distributing the difference vector for each data point to
the related control vertices. Given that the geometric interpolation
(approximation) algorithm must compute the closest point on the
limit surface for each data point in each iteration, it incurs great
computational costs.

Different from existing subdivision fitting algorithms which
take the limit surface of subdivision as the approximating surface,
in this paper, we develop a constrained surface iterative fitting al-
gorithmwhich takes themesh surface after finite time subdivisions
as the approximating surface.

Volume subdivision: Similar to the two-dimensional (2D) sub-
division scheme, the volume subdivision scheme can generate a
sequence of increasingly dense volume meshes by recursive sub-
division starting from a coarse volume mesh. The volume subdivi-
sion is mainly applied to model deformation, and its smoothness
analysis is difficult to handle.

Thus far, only a few volume subdivision schemes have been
developed. To our best knowledge, the first volume subdivision
scheme was developed in [35] for subdividing hex meshes. This
scheme is an extension of the Catmull–Clark subdivision scheme.
Furthermore, Bajaj et al. developed the MLCA subdivision rule
and analyzed its smoothness [36]. The MLCA subdivision rule can
be applied in any dimension, including 2D quadrilateral surface
mesh, and 3D hex volumemesh. In Ref. [37], Pascucci introduced a
subdivision scheme for 3Dandhigher dimensionalmesheswithout
the excessive vertex proliferation, which can be generalized to
meshes of any dimension and with cells of virtually any type.
Recently, inspired by the

√
3 subdivision scheme, an adaptive

subdivision scheme for unstructured tetrahedral meshes was
presented in [38], which generates only tetrahedra and supports
adaptive refinement.
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