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h i g h l i g h t s

• A tessellation technique based on a mesh generation is described.
• A minimum number of elements is generated to encode the shape of a model as compressed as possible.
• Conformity is guaranteed by construction.
• NURBS singularities are commented and handled properly.
• Drawbacks of parametric methods are highlighted.
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a b s t r a c t

A NURBS tessellation technique is presented with the goal to robustly approximate CAD surfaces that
define the boundary of complicated three dimensional geometric shapes with a minimum number of
triangles. The minimization is achieved by generating anisotropic triangles in the three dimensional
space. New procedures are presented to handle numerical stability issues due to the anisotropy. The
tessellation is generated using a mesh generation viewpoint, as opposed to the more classical viewpoint
of graphical visualization of surfaces in CAD. This ensures topological conformity of the resulting mesh.
A tiered approximation approach is used for speed and robustness. Degeneracies associated with NURBS
curves and surfaces are given special attention as they occur frequently in naval and aerospace conceptual-
to-early design process. Analogies with a classical mesh generation process are discussed and several
numerical examples illustrate the method.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Tessellations are critical to the design process as they provide
early visual depiction of geometry under consideration. They may
also serve as the basis for generation of analysis suitable meshes
by either providing a starting mesh or by facilitating its sizing field
and gradation, where the sizing field is the sizing dictated by the
user at a given location in space. An optimal tessellation would:

• minimize the number of triangles
• bound the distance between the surface and the discrete facets

by a user specified normalized error tolerance
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• bound the angle between the surface normal and the discrete
facets relying on the provided error tolerance

• robustly handle various types of degeneracies in the surface and
curve representation commonly employed in the conceptual
and early design of aircraft and ship structures

• be a conforming mesh.
The last requirement may not be necessary for visual purposes.
However, it greatly simplifies further remeshing procedures. Sum-
ming up, the tessellation generation can therefore be reformulated
as an interpolation problem.

In the literature, one of the first attempts to achieve optimal in-
terpolationwith triangles is proposed byD’Azevedo et al. [1]. Based
on a convex quadratic model, they show that the Delaunay trian-
gulation in a transformed plane minimizes the maximum interpo-
lation error. This work is later extended to minimize the gradient
error in [2]. Lane et al. [3] appear to have been the first to give a
bound in the distance between an analytic surface and its trian-
gulation. However the bound is global and the mesh is isotropic.
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This bound was later improved by Filip et al. [4]. However, only
orthogonal triangles are considered. Later, Sheng et al. [5] give
bounds for a general triangulation. Bézier surfaces are considered
and an approximation of the second derivatives through Cheby-
shev polynomials is proposed to seek a practical algorithm. Piegl
et al. [6] generalize this approach to trimmed NURBS surfaces rely-
ing on yet another approximation of the second derivatives. More
recently, Anglada et al. [7] generalize the bounds for the anisotropic
case. As noted in Elber [8], one of the main drawbacks of rely-
ing on the second derivative of the parametrization is the depen-
dence of the error estimate on the parametrization of the surface.
In order to remove this dependence, other characteristics of the
surface are advocated, such as the principal radii of curvature. As
mentioned in [9], the previous metric tries to bound the distance
between the surface and its tessellation. However, no guarantee
on the approximation of the tangent plane is given. Furthermore,
surface anisotropy increases the sensibility to face normal change
as a small change in coordinates may produce a large change in
the face normal, which does not appear for isotropic three dimen-
sional triangles. The proposition of [9] consists mainly in limiting
the anisotropy of themetric. Another class ofmethods relies on the
coupling between the surface tessellation and the display by the
graphic card of the resulting triangles. Advantage is taken to tes-
sellate only a subset of surfaces visible on the screen [10,11] at the
price of maintaining a dynamic environment. NURBS surfaces are
converted into their rational Bézier counterparts, as in Rockwood
et al. [12]. Thesemethods reach a high speed of display but are nei-
ther adaptive nor anisotropic, relying on a user specified distance
on the screen. Some methods split the surface into subpatches un-
til trimming contours form a unique loop [12,13]. The main draw-
back of this approach is the necessity of handling non conforming
patches inside the surface. In all the previous references, the tessel-
lation is performed from the parametric plane without any refer-
ence to the three dimensional space. Common NURBS features
include degeneracies [14–16], where the G1 continuity may not
even exist [17]. Tangent plane and normal computations may be
jeopardized. Therefore, some other methods prefer to rely on an
error estimate based on a three dimensional criterion. In Balázs
et al. [18], the distance between the control points and the bilin-
ear surface approximation is considered. In Shu et al. [19], a sim-
ilar ‘‘flat test’’ is used. In the same spirit, Piegl et al. [20] do not
assume any differentiability of the surface and rely on an approxi-
mating plane of the four corners of the control polygon. In Haimes
et al. [21], triangles are split at their centroid if the distance be-
tween the centroid and the surface is larger than the defined tol-
erance. We conclude this literature review by noting that very few
references about CAD tessellation generation exist from the main
CAD vendors, while CAD tessellation is not an entirely solved prob-
lem [22].

Originally, tessellationswere primarily created for visualization
purposes where every geometric face is tessellated independently.
This approach leads to non conforming meshes at face boundaries
which may be acceptable for visualization but not for analyses or
mesh generation input that relies on conforming tessellations. In
this work, a finite element mesh generation process is followed,
where edges are meshed first followed by faces that use the ex-
isting edge meshes for the boundaries. Conformity is therefore
enforced by the design of the meshing process. Conformity is es-
sential to classify mesh entities against their respective geometry
entities [23], to be able to remesh a surface from the original tes-
sellation [24], or simply to have a conforming mesh to output the
tessellation compared to a stereolithographic model (STL), where
many topological pathologies may arise [25–27]. Finally, minimiz-
ing the number of triangles allows encoding a geometry with a
minimum number of triangles given an accuracy threshold. It also
provides the ability to generate sizing fieldswith aminimumnum-
ber of elements [28].

Fig. 2.1. A parametric trimmed curvewithin parameters tA and tB in the parametric
one dimensional domain, bounded by vertices A and B in three dimensions.

The rest of this paper is as follows. Parametric curves and sur-
faces along with their approximation are reviewed in Section 2;
they represent the most widely used class of surface definition in
CAD kernels. This allows us to define basic tools to guarantee an ac-
curate tessellation. Some practical pitfalls that are associated with
this approach are also discussed. Section 3 presents the core of the
methodwhich relies asmuch as possible on using the three dimen-
sional space instead of relying on G1 continuity of the parametric
form. Finally, Section 4 illustrates the capabilities of themethod on
some representative examples.

2. Parametric curves and surfaces

In this section, some basic notions of curves and surfaces are
recalled to address the tessellation interpolation problem. It gives
the basic tools to measure the tessellation accuracy, and to illus-
trate the potential pitfalls met in practice. As far as notations are
concerned, quantities belonging to the parametric space are noted
with lower case letters, while quantities belonging to the three di-
mensional space are noted with capital letters.

2.1. Parametric curves

In this part, parametric curves are considered. Then, interpola-
tion error estimates are commented. Let C be a parametric curve
from a domain ω ⊂ R to Γ ⊂ R3 as:

C : ω ⊂ R → Γ ⊂ R3 (2.1)
t → C(t).

Typically, the parametric curve is assumed to be twice differen-
tiable with respect to t . However, this may not be true in practice.

2.1.1. Length computation
The main aim of a tessellation is to approximate the geometry

of the curve as accurately as possible. The length of the curve
represents a critical tool to accomplish this task. The length L of
a parametric curve from parameter t0 to t1 reads:

L =

 t1

t0
∥C′(l)∥ dl (2.2)

where ∥C′(l)∥ is the norm of the tangent vector of the curve. For a
straight mesh edge AB on the parametric line reparametrized with
respect to t between 0 and 1, as shown in Fig. 2.1, it reads:

L =

 1

0


(B − A)T∥C′(t)∥(B − A) dt. (2.3)

However, the three dimensional length of the curve does not
indicate if more mesh edges should be used to discretize the curve
accurately. An interpolation error is needed to drive the refinement
process. By modifying the metric used in the length of a curve, it is
possible to obtain more insight on where to refine, as shown in the
next section.
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