
Computer-Aided Design 48 (2014) 1–16

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Constructing a meta-model for assembly tolerance types with a
description logic based approach
Yanru Zhong a, Yuchu Qin b, Meifa Huang c,∗, Wenlong Lu b, Liang Chang a

a Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, PR China
b The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of
Science and Technology, Wuhan 430074, PR China
c School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, PR China

h i g h l i g h t s

• Constraint relations are formalized by assertional axioms.
• Assembly tolerance types are defined with terminological axioms.
• Assembly tolerance types are generated automatically in the meta-model.
• The meta-model has rigorous logic-based semantics.
• The meta-model lays a good foundation for realizing semantic interoperability.

a r t i c l e i n f o

Article history:
Received 29 April 2013
Accepted 23 October 2013

Keywords:
Meta-model
Assembly tolerance types
Semantic interoperability
Description logics

a b s t r a c t

There is a critical requirement for semantic interoperability among heterogeneous computer-aided
tolerancing (CAT) systems with the sustainable growing demand of collaborative product design. But
current data exchange standard for exchanging tolerance information among these systems can only
exchange syntaxes and cannot exchange semantics. Semantic interoperability among heterogeneous
CAT systems is difficult to be implemented only with this standard. To address this problem, some
meta-models of tolerance information supporting semantic interoperability and an interoperability
platform based on these meta-models should be constructed and developed, respectively. This paper
mainly focuses on the construction of a meta-model for assembly tolerance types with a description
logic ALC(D) based approach. Description logics, a family of knowledge representation languages
for authoring ontologies, are well-known for having rigorous logic-based semantics which supports
semantic interoperability.ALC(D) can provide a formalmethod to describe the research objects and the
relations among them. In this formal method, constraint relations among parts, assembly feature surfaces
and geometrical features are defined with some ALC(D) assertional axioms, and the meta-model of
assembly tolerance types is constructed through describing the spatial relations between geometrical
featureswith someALC(D) terminological axioms. Besides,ALC(D) can also provide a highly efficient
reasoning algorithm to automatically detect the inconsistency of the knowledge base, a finite set of
assertional and terminological axioms. With this reasoning algorithm, assembly tolerance types for each
pair of geometrical features are generated automatically through detecting the inconsistencies of the
knowledge base. An application example is provided to illustrate the process of generating assembly
tolerance types.

Crown Copyright© 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Semantic interoperability refers to the ability of computer sys-
tems to transmit data with unambiguous, shared meaning [1].
With the sustainable growing demand of collaborative product de-
sign, there is a critical requirement for semantic interoperability

∗ Corresponding author.
E-mail address: hmhmf@guet.edu.cn (M. Huang).

among heterogeneous CAT systems [2,3]. To implement semantic
interoperability, heterogeneous CAT systems should have the abil-
ity to transmit tolerance information with unambiguous, shared
meaning. However, CAT systems are developed separately and in-
dependently by different vendors. The data storage format and in-
formation transmission mode are all different in these systems. So
CAT systems must use the standard for the exchange of product
model data (STEP) [4] as an intermediary to realize the exchange
of tolerance information among them. From the perspective of data
exchange, STEP has the following drawbacks [5]: (1) STEP uses

0010-4485/$ – see front matter Crown Copyright© 2013 Published by Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cad.2013.10.009

http://dx.doi.org/10.1016/j.cad.2013.10.009
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2013.10.009&domain=pdf
mailto:hmhmf@guet.edu.cn
http://dx.doi.org/10.1016/j.cad.2013.10.009

2 Y. Zhong et al. / Computer-Aided Design 48 (2014) 1–16

neutral files to realize data exchange. Because these neutral files
always occupy a large amount of space, it is difficult to implement
the real-time data exchange. (2) STEP attempts to use the EXPRESS
modeling language to construct consistent semantic models. But
because concepts are always expressed with ambiguous meaning
in different application domains, it is difficult to construct a gen-
eral semantic model. (3) STEP provides the mapping mechanisms
from EXPRESS language to extensible markup language (XML). The
uncontrollable nestifications in XML will lead to extremely com-
plex structure and lacking data constraint of XML documents. Data
exchange in STEP still remains on the level of syntax but not on
the level of semantics. Thus, tolerance information is difficult to be
transmitted unambiguously and semantic interoperability among
heterogeneous CAT systems is difficult to be implemented only
with STEP [6].

To accomplish semantic interoperability among heterogeneous
CAT systems, some meta-models of tolerance information sup-
porting semantic interoperability should be constructed and then
an interoperability platform based on these meta-models should
be developed. This paper mainly focuses on constructing a meta-
model of assembly tolerance types with a description logic
ALC(D) based approach. The meta-models of other tolerance
specificationswill be constructed and the interoperability platform
based on all these constructed meta-models will be developed in
the upcoming works.

Description logics, a family of knowledge representation lan-
guages for authoring ontologies, are well-known for having rigor-
ous logic-based semantics supporting interoperability. They have
been widely applied to the field of industrial information sys-
tems to realize semantic interoperability [7]. The main strength of
description logics is they provide considerable expressive power
going far beyond propositional logic, while reasoning is still de-
cidable. Furthermore, they offer highly efficient reasoning algo-
rithms [8]. As a kind of knowledge representation languages, the
intuition of description logics is to define concepts of a domain
and use these concepts to specify the properties of individuals oc-
curring in this domain. The primitive symbols of description logics
are a set of role names, a set of concept names and a set of indi-
vidual names. Starting from these symbols, each kind of descrip-
tion logics provides a set of constructors to form complex roles
and concepts. Attributive language with complements (ALC) [9]
is one of the most influential description logics. It provides nega-
tion (¬), conjunction (⊓), disjunction (⊔), existential restriction
(∃) and value restriction (∀) constructors for construction of con-
cepts.With these constructors, some knowledge on abstract logical
level can be described. For example, the concept Computer-aided-
tolerancing can be specified as follows:

Computer-aided-tolerancing ≡ Tolerance-design ⊓ ∃use.Computer.

Which represents that computer-aided tolerancing is concerned
with all aspects of using a computer to do tolerance design. ALC
not only provides certain expressive power for describing the
knowledge on abstract logical level, but also desirable computa-
tional properties such as decidability, soundness and completeness
of deduction procedures. However, a drawback of ALC is that all
the knowledge has to be defined on abstract logical level. For ex-
ample, coaxiality tolerance can be defined as a geometric variation
caused by two coincident lines. This example refers to the knowl-
edge defined on concrete logical level. ALC is not sufficient for
describing the knowledge in the example.

To meet the requirements of applications in which the knowl-
edge can be defined on a concrete logical level,ALC is extended by
adding a concept-formingpredicate constructor andALC(D) [10]
is therefore achieved. ALC(D) divides the set of logical objects
into two disjoint sets, the abstract and the concrete objects. Ab-
stract objects can be related to concrete objects via attributes.

Relations between concrete objects are described with a set of
domain specific predicates. Referring to these predicates, proper-
ties of abstract objects can also be described through using the
concept-forming predicate constructor. In ALC(D), the pair con-
sisting of a set of concrete objects and a set of predicates de-
fined over these objects is called a concrete domain. With a
concrete domain, knowledge in a concrete application domain can
be described and reasoned conveniently. So ALC(D) is quite suf-
ficient to model assembly tolerance types. Tomake this paper self-
contained, a technical background about ALC(D) is sketched in
Section 2.

The rest of the paper is organized as follows. An overview of
related works is given in Section 3. Constraint relations in the spa-
tial relations based assembly tolerance representation model [11]
are defined with some ALC(D) assertional axioms in Section 4.
Section 5 defines a concrete domain DAT and constructs a meta-
model of assembly tolerance types with some ALC(DAT) ter-
minological axioms. Section 6 provides an application example to
illustrate the process of generating assembly tolerance types in the
constructed meta-model. Finally, discussions are carried out and
conclusions are drawn in Sections 7 and 8, respectively.

2. Preliminaries

In this section, a brief introduction to the concrete domain and
the syntax, semantics and reasoning algorithm of description logic
ALC(D) [10] are given.

2.1. Concrete domain D

As mentioned in the introduction, the pair which consists of a
set of concrete objects and a set of predicates defined over these
objects is called a concrete domain. It can be formally defined as
follows:

Definition 1. A concrete domain D consists of a set dom(D),
the domain of D , and a set pred(D), the predicate names in D .
Each predicate name P is associated with an arity n, and an n-ary
predicate PD

⊆ dom(D)n.

2.2. Syntax and semantics of ALC(D)

Primitive symbols of description logic ALC(D) contain: a set
of concept names NC ; a set of role names NR; a set of abstract
domain individual names NAI ; a set of concrete domain individual
names NCI ; a set of attribute names NA; a set of predicate names
pred(D); the constructors ¬,⊓,⊔, ∃,∀, and C∃P; other symbols,
including subsumed symbol ⊑, defined symbol ≡, parenthesis (),
colon :, comma , and period ..

Starting with these symbols, the concept terms ofALC(D) are
inductively defined with a set of constructors.

Definition 2. The concept terms of ALC(D) is generated by the
following syntax rule:

C,D→ Ci | ¬C | C ⊔ D | ∀R.C | P(u1, u2, . . . , un)

where Ci ∈ NC , R ∈ (NR ∪ NA), P ∈ pred(D), u1, u2, . . . , un ∈ NA.

The expressions of the forms Ci,¬C, C ⊔ D,∀R.C and P(u1, u2,
. . . , un) are atomic concept, concept negation, concept disjunction,
value restriction and predicate restriction, respectively. The
concept terms satisfy DeMorgan law. Thus the expressions of the
forms Top (universal concept), Bot (bottom concept), C⊓D (concept
conjunction) and ∃R.C (existential restriction) are introduced as
the abbreviations of the expressions C ⊔ ¬C,¬Top,¬(¬C ⊔ ¬D)
and ¬(∀R.¬C).

Download English Version:

https://daneshyari.com/en/article/440057

Download Persian Version:

https://daneshyari.com/article/440057

Daneshyari.com

https://daneshyari.com/en/article/440057
https://daneshyari.com/article/440057
https://daneshyari.com

