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h i g h l i g h t s

• Support for analyzing over-constraint sketches in CAD.
• Use of non-cartesian geometric modeling.
• Tool for decision making in constraint choice.
• Methodology to solve over-constraint problems.
• Possible application in collaborative environment.
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a b s t r a c t

This paper proposes a new tool for decision support to address geometric over-constrained problems
in Computer Aided Design (CAD). It concerns the declarative modeling of geometrical problems. The
core of the coordinate free solver used to solve the Geometric Constraint Satisfaction Problem (GCSP)
was developed previously by the authors. This research proposes a methodology based on Michelucci’s
witness method to determine whether the structure of the problem is over-constrained. In this case, the
authors propose a tool for assisting the designer in solving the over-constrained problem by ensuring the
consistency of the specifications. An application of the methodology and tool is presented in an academic
example.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In Computer Aided Design (CAD), the model is the computer
representation of the object being designed. This geometric model
is often named the Digital Mock-Up (DMU) and is now the core of
CAD systems. In this study, the geometric model is the reference
model.

There are essentially two strategies for building a digital mock-
up in CAD systems: the procedural approach and the declarative
approach [1]. This paper focuses on declarative approaches be-
cause they are often used in the 2D sketcher and 3D assembly
workbenches of CAD systems [2] and because the authors have al-
ready worked on them in [3–6]. The declarative approach assumes
that the designer first specifies a list of generic geometric objects
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and, second, a list of constraints between the objects defined pre-
viously. Then, a software application is used to solve all these con-
straints and build the virtual object. In order to obtain a valid
object, it is necessary to ensure that all the specifications (generic
objects and constraints) given by the user are consistent.

Moreover, the DMU is used in many simulations that cause
the geometry to evolve due to changes made to the specifications
required by the design team. It is therefore very important to
maintain consistency in the statement of the problem. In general,
problems that present inconsistencies are of two types: under-
constrained problems and over-constrained problems. In this
paper, we focus on over-constrained problems.

At present, when a designer comes across an over-constrained
problem, no plans are available (at best a message is displayed
on the screen). They must unravel it alone. Maintaining the
consistency of the digital mock-up is even harder when several
designers are involved in the design process. In this paper the
authors propose to generate relations between the parameters of
specifications in view to guiding users to ensure the consistency
of the sets of parameters used. Therefore this paper will describe
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Fig. 1. Geometry of the double banana.

how to provide users with the elements necessary for maintaining
the consistency of the geometry created. How is it possible to
help designers to clearly specify their geometry? In the framework
of collaboration, if a geometric problem is over-constrained,
who arbitrates between the values of different specifications?
This paper presents a solution for managing over-constrained
geometric problems by giving users a tool for generating consistent
sets of specifications.

The authors have already developed a conceptual model based
on vectorizing the geometry for generic geometric objects. The
associated solving strategy uses a coordinate-free representation.
The major advantage of this approach is that it is unnecessary to
take the cartesian reference frame into account for solving pur-
poses. In 3D space, a geometric object is characterized by a Gram
matrix that is positive semidefinite and has rank 3. Some elements
of this matrix must have specific values imposed by the user, the
others are unknowns. The geometric problem is solved by obtain-
ing a Gram matrix H that meets the above conditions. This entails
a matrix completion problem [7,8]. Indeed, in order to complete a
partial matrix it is necessary to make specific choices of values for
the unspecified entries.

The solution proposed by us is to find a transformation T that
changes an initial object into a final object. The G Gram matrix
characterizes the initial object. H Gram matrix characterizes the
final object and is defined by the fundamental relationship (1), as
explained in greater detail in [9]:

H = TGTt . (1)

More specifically, in our study, T = (I + CX), where C is the
topological connection matrix, X the vertex perturbation matrix
and I the Identity.

The authors make use of their previous work to address the
problem of consistency. The proposed methodology and tool are
applied to a case study shown in Fig. 1. It is a 3D bar structure called
‘‘double banana’’. The lengths of the 18 bars are specified, it can be
seen that this system is not rigid because each banana can rotate
about the axis defined by the two end points A and B connecting
them.

We begin in Section 2 by giving a series of tools used to describe
the geometric problem. Section 3 describes the coordinate free
formulation applied to this GCSP2 andpresents the solvingmethod.
In Section 4, a method for analyzing whether the geometric
problem is overconstrained or not, is described. Following this, if
the problem is declared over-constrained, we propose a method
for assisting a design team to seek a consistent set of constraints.
Finally, Section 5 uses the example of the double banana to
illustrate the application of this methodology.

2 Geometric Constraint Satisfaction Problem.

Remark. The Einstein notation or Einstein summation convention
is employed in this paper. This notation implies the summation
over a set of indexed terms in a formula, thus achieving notational
brevity.

2. A coordinate free-model for representing the geometry

This section presents a non-cartesian model that characterizes
geometric objects. We recall here the basics of the method as
described in [5]. The characteristic of this approach is that it is
unnecessary to perform cartesian reference frame, which is a real
benefit for the sketching tasks of CAD designers. The principle is
that any geometry can be represented as points and vectors. These
are the central elements of our modeling. In the following, we
describe three models that fully describe the design geometry.

2.1. The topological model

The geometry is reduced to a skeleton composed of points
and line segments. An incidence matrix C, establishes the relation
between each point of an object and its edges. It is an n×mmatrix,
where n and m are the number of edges and vertices respectively,
such that C j

i = −1 if the edge ei leaves vertex pj, 1 if it enters vertex
pj and 0 otherwise. Fig. 2 gives an example of an incidence matrix.
Edges are oriented arbitrarily.

2.2. The geometrical model

The geometrical object is closely related to the topological
model. Indeed, a vector is associated with each edge. Therefore
each vector is an oriented bipoint. Thus the geometrical model is
represented by a list of vectors.

Given V a set of n non-normed vectors as V = (v1, v2, . . . , vn).
The Gram matrix is the mathematical tool used to represent this
vectorial model. Thus G(V) is defined by: Gij(V) = ⟨vi, vj⟩ where
⟨vi, vj⟩ is the scalar product between vectors vi and vj. This matrix
is also noted G in the following.

The Gram matrix of a set of vectors is constructed for each
representation of a sketch. This Gram matrix fully defines the
metrics of the object. It should be noted that this modeling is
independent of the Cartesian coordinate system since all the
vectors are defined in relation to one another: the vectors are not
represented by their Cartesian coordinates but by their relative
scalar products. An advantage of this approach is the possibility of
ensuring specification consistency by verifying the mathematical
properties of theGrammatrix (symmetrical, positive-semidefinite,
rank, etc.). For example, by calculating specific determinants, it is
possible to knowwhether or not there is a solution to the problem
(see [10]).

2.3. The specification model

For our purpose, it is assumed that a geometric problem is
defined by a skeleton, totally defined by the topological and
geometrical models, and by a list of geometric constraints. In this
study, we only focus on the length of the vectors, called L, or
the angle between two vectors called α. All the specifications are
stocked in S. It is a partially filled Gram matrix.

Element Sii is known if the user chooses a specific length for vi,
as presented in Eq. (2).

Li =

Sii. (2)

Element Sij is defined if the user specifies the angle between vi
and vj. Thus,

cos(αij) =
Sij

√
Sii


Sjj

. (3)

These three models fully characterize the GCSP.
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