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h i g h l i g h t s

• A compact Shape-DNA is presented to describe the shape of a triangular surface mesh.
• Compact Shape-DNA is composed of low frequencies of DFT of processed Shape-DNA.
• The method reduces up to 97% space and time consumptions compared to Shape-DNA.
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a b s t r a c t

Three-dimensional shape-based descriptors have been widely used in object recognition and database
retrieval. In the current work, we present a novel method called compact Shape-DNA (cShape-DNA) to
describe the shape of a triangular surface mesh. While the original Shape-DNA technique provides an
effective and isometric-invariant descriptor for surface shapes, the number of eigenvalues used is typically
large. To further reduce the space and time consumptions, especially for large-scale database applications,
it is of great interest to find a more compact way to describe an arbitrary surface shape. In the present
approach, the standard Shape-DNA is first computed from the given mesh and then processed by surface
area-based normalization and line subtraction. The proposed cShape-DNAdescriptor is composed of some
low frequencies of the discrete Fourier transform of the processed Shape-DNA. Several experiments are
shown to illustrate the effectiveness and efficiency of the cShape-DNA method on 3D shape analysis,
particularly on shape comparison and classification.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

With rapid generation and increasingly availability of digi-
tal models in recent years, surface shape analysis has become
one of the most important tasks in computer graphics commu-
nity [1]. Some popular applications are shape comparison, classifi-
cation and retrieval. The problem of rigid shape comparison and
retrieval has been well studied and a large number of methods
and tools have been developed [2,3]. How to efficiently and accu-
rately retrieve non-rigid (deformable) shapes from large databases,
however, still remains a challenging problem, which inspires re-
searchers to find good descriptors for non-rigid surface shapes. The
existing methods on non-rigid shape descriptors can be roughly
classified into two categories: global methods and local meth-
ods. Global methods use some global and isometric-invariant
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properties of shapes while local methods use local features of
shapes as shape descriptors.We refer the readers to [4–7] for more
details on these descriptors. The present paper is focused on the
global methods and a new global and compact descriptor is pro-
posed to efficiently describe shapes. Among the work on non-rigid
shape description using global features, spectral-based methods
have gained a lot of attention due to its representing simplicity
and computational efficiency [8], and have been studied both the-
oretically [9] and computationally [10]. For a detailed survey of
spectrum-based mesh processing and shape description, the read-
ers are referred to [11].

Thanks to the property of isometric invariance, the Laplace–
Beltrami (L–B) operator on a manifold has become one of the most
popular operators for non-rigid shape analysis in such applications
asmatching [12], recognition [13–15], retrieving [16–18], segmen-
tation [19] and registration [20]. In particular, the eigenvalues and
eigenfunctions of the L–B operator play important roles in de-
scribing shapes for shape-based retrieving and mesh segmenta-
tion. Xu [21] proposed several schemes for discretizing the L–B
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operator on triangular meshes and established the convergence
under various conditions. Brandman [22] approximated the eigen-
values of the L–B operator by solving an eigenvalue problem in a
bounded domain, discretized into a Cartesian grid. Rong et al. [23]
used the eigenvalues and eigenfunctions of the L–B operator for
mesh deformation.Wu et al. [6] proposed a symmetricmean-value
L–B operator and used it as a descriptor in 3D non-rigid shape com-
parison. Shi et al. [24] presented a surface reconstruction method
based on the eigen-projection and boundary reformation of the
L–B operator. Ruggeri et al. [3] described a method of matching
3D shapes based on the critical points of the eigenfunctions cor-
responding to some small eigenvalues of the L–B operator. As the
eigenvalues are often computed on a mesh, a discrete approxima-
tion of the true underlying manifold, Dey et al. [25] studied the
convergence and stability of eigenvalues to the true spectrum of
the manifold. In addition to the traditional use for surface shapes,
the L–B operator has been used for the recognition, retrieval and
matching of images as well. Some early work dealing with those
topics can be found in [26,27], in which the images are treated as
Riemannian manifolds and the L–B or weighted L–B operators are
applied to the manifold for characterizing the images.

From the perspective of signal processing, the eigen-
decomposition of the L–B operator can be thought of as an fre-
quency analysis of the shape: the eigenvalues correspond to the
frequency values and the eigenfunctions correspond to the signals
of the associated frequencies. The Shape-DNA [28–31] consists of
the N smallest eigenvalues of the L–B operator and is often used as
a shape descriptor for measuring the similarity between different
shapes by using the Euclidean (L2) distance between the Shape-
DNAvectors. The property of isometric invariance derived from the
L–B operator is one of themost important advantages of the Shape-
DNA method, which makes it well suited for comparing non-rigid
shapes. However, it is unclear as to what number of eigenvalues,
i.e. N , should be used to form the Shape-DNA [32]. Reuter et al.
used 20 eigenvalues for shape retrieval in [12] and 11 eigenvalues
in [33]. In [34], the authors mentioned that 500 eigenvalues had
to be computed for extracting important information from Dirich-
let eigenvalues. However, in [35], the authors reported that 10–15
eigenvalues were enough for shape retrieving. In view of signal
processing, more eigenvalues contains more information of de-
tail and can describe the shape more accurately, but in the mean-
time, more time and space have to be used for computing, storing
and comparing the Shape-DNAs. In this paper, we use at most 100
eigenvalues in the Shape-DNAs and our experiments show that the
first 100 eigenvalues are typically enough for describing shapes in
the database we used for testing.

Motivated by the Shape-DNA technique, we present a novel
shape descriptor, called compact Shape-DNA (cShape-DNA), for
analyzing the shape of a triangular surface mesh. The proposed
method is a combination of the original Shape-DNA and discrete
Fourier transformation (DFT), which encodes most of the shape
information into only a small number of feature values and
inherits all the advantages of the original Shape-DNA, including
the isometric invariance. The time for computing the cShape-DNA
is close to that of the original Shape-DNA, but the proposed shape
descriptor requires smaller space for storing the cShape-DNA and
less time for shape comparison, which makes the cShape-DNA
a good candidate for fast shape retrieval especially in very large
database applications.

The remainder of this paper is organized as follows. In Section 2,
we introduce the cShape-DNA and the algorithmic detail. The
comparison between the cShape-DNA and the original Shape-DNA
for shape comparison and classification is made in Section 3. The
impact of choosing different parameters and some other factors,
such as noise and quality of the surface meshes, is also discussed
in Section 3. The conclusion is given in Section 4.

2. Method

In this section, we first briefly review the original Shape-DNA
and its computational procedure for a triangular surface mesh. We
then elaborate on the detail of the proposed cShape-DNA.

2.1. The original Shape-DNA

Generally speaking, the Laplace–Beltrami (L–B) operator is the
Laplace operator on a Riemannian manifold. It is defined as the
divergence of the gradient of a function f which is defined on the
manifold [36,37]:

1f = div(grad(f )). (1)

The eigenvalue problem of the L–B operator has the following
form:

1f = −λf . (2)

The solutions λi and fi for i = 0, 1, . . . are called the eigenvalues
and eigenfunctions of the L–B operator, respectively.

Let M be a triangular surface mesh in R3 with a set of vertices:
V = {vi}

NV
i=1. The eigenvalues of the L–B operator on M can be

numerically computed by solving the following generalized eigen-
value problem:

Af = −λBf, (3)

where λ and f are considered unknown with f , {f (vi)}
NV
i=1 being

a vector of scalar function values f (v) defined on the vertices of
M. The calculations of the NV × NV matrices, A and B, are detailed
below. The obtained λ’s and f’s are the eigenvalues and the eigen-
functions of the L–B operator onM respectively, and theN smallest
eigenvalues are known as the Shape-DNA of M [29,30].

The matrices A and B in Eq. (3) can be formulated when solving
the partial differential equation in Eq. (2) with the finite element
method (FEM), in which linear or higher order elements may
be used. Although using quadratic or cubic elements typically
yields better computational accuracy, the time cost for solving the
corresponding FEM problem ismuchmore expensive. After testing
hundreds of meshmodels taken from the McGill database [38], we
choose to adopt the linear elements in ourmethod because it yields
almost identical Shape-DNAs to those obtained using quadratic or
cubic elements but consumesmuch less time.With the linear finite
element method, the matrices A and B take the following form
when M is a closed mesh [33]:

aij =


cotαij + cotβij

2
, vivj is an edge in M

−


k∈N(i)

aik, i = j

0, other

(4)

bij =



|t1| + |t2|
12

, vivj is an edge in M
k∈N(i)

|tk|
6

, i = j

0, other

(5)

where t1 and t2 are the two triangles adjacent to edge vivj, |ti| is
the area of triangle ti, αij and βij are the angles opposite to vivj in t1
and t2 respectively, andN(i) is the index set of the vertices adjacent
to vi.

The eigenvalues of the L–B operator is discrete and can be sorted
in an increasing order: λ0 ≤ λ1 ≤ λ2 ≤ · · ·. The first eigenvalue
λ0 is always 0 when M is closed.
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