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h i g h l i g h t s

• We solve 2D/3D geometric constraints by using coordinate-free formulation.
• Statements are translated into formalism that reduces the number of equations.
• A decomposition algorithm is proposed to produce small subsystems.
• Subsystems are solved by homotopy.
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a b s t r a c t

In CAD, a designer usually specifiesmechanisms or objects by themeans of sketches supporting dimension
requirements like distances between points, angles between lines, and so on. This kind of geometric
constraint satisfaction problems presents two aspects which solvers have to deal with: first, the sketches
can contain hundreds of constraints, and, second, the problems are invariant by rigid body motions.
Concerning the first issue, several decomposition methods have been designed taking invariance into
account by fixing/relaxing coordinate systems. On the other hand, some researchers have proposed to use
distance geometry in order to exploit invariance by rigid body motions. This paper describes a method
that allows us to use distance geometry and decomposition in the same framework.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Problems of geometric constraint satisfaction where con-
straints express geometric requirements related to distances, an-
gles, tangencies and incidences occur in many fields such as CAD,
geometric modeling, robotic or molecular modeling. The prob-
lem consists in finding the position and the orientation of some
given objects in a way that some given constraints are satisfied.
More particularly, in CAD, problems come from the specification
of pieces or mechanisms given in the form of a sketch drawn by
a designer using basic geometric primitives such as points, lines,
planes, circles, spheres, etc., and metric requirements such as dis-
tances between points, angles between lines or planes. In that
framework, the aim is to get coordinates for the points, planes,
circles, etc., so that the incidence relations given by the sketch,
and the added metric constraints are fulfilled. By essence, these
problems are invariant by direct isometries (or rigid body motions

∗ Corresponding author. Tel.: +33 368854561.
E-mail addresses:mathis@unistra.fr (P. Mathis), schreck@unistra.fr

(P. Schreck).

for engineers), that is, applying a rigid body motion on a solution
yields another solution. It is also usual to assume that the objects
are well defined that is there is a finite number of solutions up to
rigid bodymotions. In that situation, the problem is said to bewell-
constrained.

Several methods designed to solve such problems are described
in the literature (see [1] for a recent state of the art). Somemethods
consider the coordinates of primitives and try to solve the equation
system either numerically, for instance with Newton–Raphson [2]
or homotopy [3] methods, or symbolically for instance by using
Gröbner basis or Ritt–Wu principle [4]. However, these methods
suffer drawbacks that we want to overcome: symbolic methods
have an exponential complexity, and numerical methods are
unable to produce all the solutions within a reasonable time.
Othermethods aremore sticked to geometry: they use knowledge-
based systems (KBS) [5,6] or graph operations [7] to solve small
problems and are designed to decompose larger problems into
smaller subproblems when it is possible. These methods for
decomposing geometric problems always take into account the
rigid body motion invariance. The way they proceed amounts to
first fix some coordinates and then relax them by letting act the
group of rigid body motions on the solutions for the subproblems.
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When successful, these techniques may allow to yield all solutions
in a reasonable time.

Unfortunately, 3D problems, even the ones involving few ob-
jects, are hard or impossible to solve by using only constructive
methods. And numerical solvers have to face systems with dozens
of equations and whose global degree is too high to enable the use
of homotopy to follow all the possible paths. For some years, an-
other approach has been studied which ignores coordinates in the
first time and which is more able to take rigid body motion invari-
ance into account [8–10]. This approach is based on coordinate-
free geometry. The idea consists of replacing coordinates by all
the distances between points. The main ingredient to write down
equations is the Cayley–Menger determinant between some sets
of constrained points. This method had been successful on some
problems like the Stewart platform problem [8] or the Malfatti
problem [9] where the equation system to solve is very small com-
pared to the classical approach based on Euclidean coordinates.
However, such systems were built by hand and, in the coordinate-
free geometry framework, there are no knownmethods for decom-
posing big systems.

We propose here a method to automatically produce equation
systems using the Cayley–Menger determinant and to structurally
decompose the constraint systems whenever possible. The result-
ing systems can then be solved by classical homotopy in order to
yield either all the solutions, or, at least, the highest number of pos-
sible solutions.

This paper is organized as follows. Section 2 introduces distance
geometry and Cayley–Menger determinants. Section 3 gives
algorithms to provide Cayley–Menger systems from constraints
systems. Section 4 presents our algorithm of decomposition of
Cayley–Menger systems. The numerical approach and some results
are given in Section 5. Section 6 concludes and mentions some
limits and future works.

2. Coordinate-free geometry

2.1. Geometrical constraint system

A geometric constraint system, in short GCS, is defined by a
triple C[X, A]where X is a set of unknowns, A is a set of parameters
and C is a set of constraints on X and A. The unknowns correspond
to some geometric entities (also called primitives or objects) such
as points, lines, circles, planes, etc., the constraints are relationships
involving distances, angles, tangencies, incidences, etc., and the
parameters are the values imposed as dimensions like distance and
angle values.

More specifically, we consider here rigid bars problems as
encountered for instance in CAD, robotics andmolecularmodeling.
So, entities are points and hyperplanes, that is, lines in 2D and
planes in 3D; constraints are about distances between two entities
and angles between hyperplanes. The model that we use does not
include 3D lines. However, it is often possible to replace them by
pair of incident points. For instance, when angles between 3D lines
are considered, they often concern adjacent segments. So the angle
between segment p1p2 and segment p1p3 can be transformed
into a distance that is expressed as a function of lengths of both
segments and the angle. Unless otherwise stated, we assume that
statements are in 3D. It is also assumed that constraint systems
are well-constrained, meaning first that there is a finite number
of solutions up to rigid body motions, and second, that in some
open neighborhood of the parameter values, each solution is a
continuous function of the parameter values. Thus parameters are
assigned to non-critical values (or regular values). For instance,
for a triangle specified by its three lengths, no length equals the
sum of the two other lengths. Note that the triangle can still have
some special property, like a right angle, or being equilateral: we

Fig. 1. Double stewart platform.

do not impose the parameter values to be generic. Indeed, the zero
distance is used later on to specify point–plane incidence.

A geometric constraint system is usually associated with its
corresponding graphs of constraints. Indeed, as constraints always
involved two objects in our case, a constraint system can be rep-
resented by graph G = ⟨V , E⟩ where V is the set of vertices for
entities and E is the set of pairwise edges for constraints. An edge
between:

• two points mean the point–point distance constraint;
• two hyperplanes represent the angle constraint;
• a hyperplane h and a point p mean distance between p and its

projection onto h (it is 0 if p lies on h).

In the rest of the paper, for the sake of simplicity, when there is
no ambiguity, we confound both notions of GCS and its associated
graph of constraints.

As an example, we consider a GCS coming from a mechanism
constituted by two stacked Stewart platforms. Recall that a Stewart
platform is an articulated system that can be represented as a
triangle basis connected by six bars to another triangle whose
position depends on the lengths of the bars. Fig. 1(a) shows a
double Stewart platform and Fig. 1(b) is the corresponding graph.
The GCS includes 9 points and 21 distance constraints.

2.2. Cayley–Menger determinants

Geometrically, the notion of determinant is related to vol-
ume. By classical operations on determinants, Cayley expressed
the volume of a simplex in terms of distances. If coordi-
nates of points are rows of matrices, multiplications of such
matrices perform dot products that eliminate coordinates and
make distances appear. Later, Menger studied its relevance
to solve geometrical problems. Since then, the Cayley–
Menger determinant is used to express or solve the geometric
problem in a coordinate-free framework. Lu Yang [11] extended
Cayley–Menger determinants to hyperplanes and hyperspheres.

Given a set of n points {p1, . . . , pn} in the Euclidean space of
dimension d, the Cayley–Menger (CM for short) determinant of
these points is defined by:

D(p1, . . . , pn−1, pn) =



0 1 1 · · · 1
1 0 r1,2 · · · r1,n
1 r2,1 0 · · · r2,n
...

...
...

. . .
...

1 rn,1 rn,2 · · · 0


where ri,j is the squared distance between pi and pj. Then D(p1,
. . . , pn) is the determinant of a symmetric matrix.

In dimension d, a set of n ≥ d + 2 points specified by a Cay-
ley–Menger determinant is embeddable inRd ifD(p1, . . . , pn) = 0.
In particular, in 3D, for 5 and 6 distinct points it comes:

D(p1, p2, p3, p4, p5) = 0
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