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h i g h l i g h t s

• The challenges of simulation-based multiobjective design optimization are analyzed.
• A three-stage solution process is proposed, featuring interactive decision making.
• Demonstrated by a case study of multiobjective design optimization of a paper mill.
• Applicable to computationally intensive black-box formulations of real-life problems.
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a b s t r a c t

In this paper, we address some computational challenges arising in complex simulation-based design
optimization problems. High computational cost, black-box formulation and stochasticity are some of the
challenges related to optimization of design problems involving the simulation of complex mathematical
models. Solving becomes even more challenging in case of multiple conflicting objectives that must be
optimized simultaneously. In such cases, application ofmultiobjective optimizationmethods is necessary
in order to gain anunderstanding ofwhich design offers the best possible trade-off.We apply a three-stage
solution process to meet the challenges mentioned above. As our case study, we consider the integrated
design and control problem in paper mill design where the aim is to decrease the investment cost and
enhance the quality of paper on the design level and, at the same time, guarantee the smooth performance
of the production system on the operational level. In the first stage of the three-stage solution process,
a set of solutions involving different trade-offs is generated with a method suited for computationally
expensive multiobjective optimization problems using parallel computing. Then, based on the generated
solutions an approximationmethod is applied to create a computationally inexpensive surrogate problem
for the design problem and the surrogate problem is solved in the second stage with an interactive
multiobjective optimization method. This stage involves a decision maker and her/his preferences to find
the most preferred solution to the surrogate problem. In the third stage, the solution best corresponding
that of stage two is found for the original problem.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The widespread availability of powerful computers has made
it possible to obtain detailed analyses of complex systems quickly
and at a relatively low cost. Consequently, computer simulation
has become a central tool in the design process across the
industries. Computer simulation can be readily used to answer
questions such as whether or not a system will meet specified
requirements. To answer questions such as what is the maximum
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system performance and how the system should be designed to
achieve themaximumperformance, simulationmust be combined
with optimization. Solving an optimization problem that depends
on the output of a simulation model is known as simulation-
based optimization. In this paper, we consider computational
challenges of simulation-based optimization encountered with
real-life design optimization problems and relate them to a case
study in the paper industry.

A computer simulation of a physical or some other system of
interest typically consists of solving a system of algebraic and
differential equations. From the optimization point of view, using
a simulator as an external solver for a system of equations is
equivalent to dividing the decision variables into two groups, the
dependent and the independent variables, and substituting the
dependent variables with functions of the independent ones. The
choice between dependent and independent variables is often
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dictated by the simulator, which has to take the independent
variables as input and provide the values of the dependent
variables as output. Considering only the independent variables
as decision variables reduces the dimensionality of the problem
but, on the other hand, makes it a black-box optimization problem
because the functional relationship between the independent and
the dependent variables is known only implicitly. This prevents
any algebraic manipulation and makes it very difficult to validate
the assumptions of, for example, convexity and differentiability
that many optimization methods rely on.

In a real-life design optimization problem, there is rarely a sin-
gle performance measure fully appreciating the relative merits
of each design. Instead, it is characteristic of a design opti-
mization problem to have multiple, conflicting objectives. When
optimization is applied, however, the optimization problem is
commonly formulated with a single objective – often by consid-
ering a weighted sum of the design objectives or by treating all but
one of themas constraints – becausemost of the optimization algo-
rithms can handle only single-objective problems. A shortcoming
of a simplistic single-objective problem formulation is that it pro-
vides little support for decisionmaking, often requiring the param-
eters in the problem formulation to be adjusted by trial and error
to achieve the desired outcome. The structure of a design optimiza-
tion problem can often be reflected more closely by formulating it
as amultiobjective optimization problem, inwhich all the objectives
are to be optimized simultaneously. A multiobjective formulation
comes with a cost, though, as it necessitates the involvement of a
decision maker.

With an increasing complexity of design problems, finding
an optimal design in real-life applications remains a challenging
task [1–3]. The computational challenges in design optimization
that we consider in this paper (and which we have found are the
most pertinent ones) are the following.

Computational cost In simulation-based optimization, the ob-
jective and constraint functions depend on the decision
variables not only directly, but also indirectly through the
simulation model. Therefore, to calculate the values of
those functions, a simulation must be carried out, which
may well take from few minutes to several days. More-
over, the simulation must be repeated every time an op-
timization method needs to evaluate the objective and
constraint functions. Thus, the time required for one sim-
ulation run on average, or the computational cost of the
simulation, is a major factor limiting the practicability of
simulation-based optimization.

Conflicting objectives Multiple, conflicting objectives give rise
to a set of solutions, called the Pareto optimal set, that
correspond to different trade-offs among the objectives
and are not self-evidently comparable. This is in con-
trast to single-objective optimization, in which an op-
timum, if it exists, is uniquely defined. With multiple
objectives, the identification of the preferred solution re-
quires the involvement of a decisionmaker and sufficient
methodological support to explore the alternative solu-
tions. It is, however, challenging to implement a system
that can provide a fast enough response for successful de-
cision making when applied to computationally expen-
sive simulation-based optimization.

Black-box models The lack of closed form expressions for the
objective and constraint functions effectively requires a
design optimization problem to be treated as a global
optimization problem. The necessity of global optimiza-
tion increases the computational cost of design opti-
mization and limits the size of the design optimization
problems that can be solved. Fortunately, it is rarely nec-
essary to guarantee global optimality, but instead, a suffi-
cient improvement over an existing design is acceptable.

Stochasticity In many real-life design optimization problems,
the system of interest is best modeled by a stochastic
process. In that case, themodel output is a randomvector,
often with an unknown probability distribution. The
model output can be sampled by a computer simulation,
although the computational cost of simulating the
output increases with the sample size. Moreover, unless
the sample size is sufficiently large, sampling error
introduces noise to the values of the objective and
constraint functions that depend on some statistic of the
model output.

The above challenges are intertwined in the sense that the pres-
ence of each one of them makes the others more difficult to ad-
dress. For example, global optimization quickly becomes impracti-
cal if the computational cost of the design optimization problem
increases. Likewise, stochasticity and conflicting objectives both
aggravate the difficulties caused by a high computational cost be-
cause more computation is required to sample the model output
and to assess the trade-offs, respectively.

An overview of optimization methods applied to solving
multiobjective engineering problems is given in [4]. Metamodeling
techniques have been found to be beneficial tools in supporting
design optimization [5,6]. In multiobjective design optimization,
most of the efforts have been devoted to finding a number of
Pareto optimal solutions (see, e.g., [7–10]) without considering
support for a decision maker. Only few applications of interactive
multiobjective optimization methods to design optimization
problems can be found, e.g., in [11–16]. For example, Tappeta
et al. [11] have proposed an approach which differs from
ours in three aspects. First, it requires constructing individual
metamodels for all objective and constraint functions. Second, a
local approximation of the Pareto optimal set is considered. Finally,
there is no clear distinction between interaction with a decision
maker and the demanding computations which would imply long
waiting times in case a decision maker wishes to explore different
(other than local) Pareto optimal solutions. To our knowledge,
there is no off-the-shelf interactive method which could be
directly applied to computationally expensive simulation-based
multiobjective optimization problems without creating waiting
times for a decision maker.

We present in this paper a three-stage solution process that
is designed to address the challenges of computationally expen-
sivemultiobjective design optimization. A wide range of optimiza-
tion algorithms can be integrated with the solution process, which
makes it applicable to many real-life design optimization prob-
lems. In the first stage, termed the pre-decision making stage, suffi-
cient information is gathered about the alternative solutions to the
multiobjective design optimization problem. In the second stage,
termed the decision making stage, a human decision maker is in-
volved by using an interactive method to solve a computationally
inexpensive surrogate problem constructed on the basis of the in-
formation gathered in the first stage. In the third stage, termed
the post-decision making stage, the original design optimization
problem is solved with the purpose of finding a solution that best
matches the preferred solution to the surrogate problem identified
in the second stage.

The three-stage solution process has the benefit that it sepa-
rates the time-consuming simulation-based optimization from the
decision making stage. This allows fluent interaction with the de-
cision maker regardless of the computational intensiveness of the
simulation model. The solution process is motivated by the PAINT
method [17], which can be used to create a surrogate problem for
decisionmaking, as well as by the availability ofmultiobjective op-
timization methods such as ParEGO [18] and SMS-EGO [19] that
provide a finite approximation to the Pareto optimal set of a mul-
tiobjective optimization problem.
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