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Predictive performance of plant species distribution models depends on
species traits
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a b s t r a c t

Predictive species distribution models are standard tools in ecological research and are used to address

a variety of applied and conservation related issues. When making temporal or spatial predictions,

uncertainty is inevitable and prediction errors may depend not only on data quality and the modelling

algorithm used, but on species characteristics. Here, we applied a standard distribution modelling

technique (generalized linear models) using European plant species distribution data and climatic

parameters. Predictive performance was calculated using AUC, (Cohen’s) Kappa and true skill statistic

(TSS), that were subsequently correlated with biological and life-history traits. After accounting for

phylogenetic dependence among species, model performance was poorest for species having a short life

span and occurring in human disturbed habitats. Our results clearly indicate that the performance of

distribution models can be dependent on functional traits and provide further evidence that a species’

ecology is likely to affect the ability of models to predict its distribution. Biased and less reliable

predictions could misguide policy decisions and the management and conservation of our natural

heritage.

& 2010 Rübel Foundation, ETH Zürich. Published by Elsevier GmbH. All rights reserved.

Introduction

Species distribution models (SDMs) are widely used tools in
ecological research (Guisan and Zimmermann, 2000). Given the
increasing importance of SDMs in ecological risk assessment, an
evaluation of their predictive capacity is necessary (Barry and
Elith, 2006). Within temporal or spatial predictions, model
uncertainty is inevitable and thus prediction error needs to be
assessed thoroughly in order to derive reasonable interpretation
of the model results (Heikkinen et al., 2006).

Fielding and Bell (1997) distinguished between ‘algorithmic’
and ‘biotic’ prediction errors. Algorithmic errors have been widely
studied (e.g. Segurado and Aráujo, 2004; Pearson et al., 2006;
Meynard and Quinn, 2007) and are an artefact of the data-
collection process or stem from limitations of the modelling
approach. In contrast, biotic errors occur when ecological
parameters are omitted from the modelling framework and lead
to an inaccurate description of the species’ distribution. SDMs are
based on the assumption that species are in equilibrium with
climate, i.e. they occur in all climatically suitable areas whilst
being absent from all unsuitable ones (Guisan and Zimmermann,
2000). However, this assumption is violated by the influence of

biotic interactions (Brown et al., 1996; Pearson and Dawson,
2003) and dispersal limitations (Svenning et al., 2008). Further,
SDMs assume that species show no intraspecific variability
regarding their niche but this is not always true, for example
large-ranging species show adaptations to local conditions
(Stockwell and Peterson, 2002). Distribution models commonly
apply climatic predictors but other biologically relevant para-
meters such as land use, geological and pedological properties,
groundwater influence and biotic interactions were, until re-
cently, rarely considered mostly due to limited data availability.
This has been addressed in recent studies and applications are
promising (Heikkinen et al., 2007; Luoto et al., 2007; Pompe et al.,
2008; Rickebusch et al., 2008; Schweiger et al., 2008).

Besides modelling algorithm and environmental parameters,
predictive performance can be associated with species’ traits.
Geographical attributes of ranges (McPherson et al., 2004; Luoto
et al., 2005) and climatic niche position (Kadmon et al., 2003;
Hernandez et al., 2006) have been identified as correlates of
predictive performance. The importance of range size for
predictive performance is often studied although results are
inconclusive. While some studies report that models of species
with a high prevalence perform better compared to species with
low prevalence (birds: Kadmon et al., 2003, artificial species:
Meynard and Quinn, 2007), others found opposite results (birds:
Stockwell and Peterson, 2002, butterflies: Luoto et al., 2005,
various animal species: Hernandez et al., 2006). Furthermore, the
influence of prevalence can be a statistical artefact because of the
systematic dependence of modelling algorithms and accuracy

Contents lists available at ScienceDirect

journal homepage: www.elsevier.de/ppees

Perspectives in Plant Ecology, Evolution and Systematics
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measures on prevalence (McPherson et al., 2004; Allouche et al.,
2006). Results concerning climatic niches are less ambiguous and
models of species with clumped distributions (Luoto et al., 2005)
and a narrow climatic niche are generally more accurate (Kadmon
et al., 2003; Hernandez et al., 2006) than models of species with
scattered distributions and wider climatic tolerance.

Since range and niche characteristics within these studies
were derived from the data used for modelling, they strongly
resemble data characteristics within the study area and do not
necessarily depict true species characteristics. Independent data
on species’ traits have only been correlated with prediction errors
for birds (Seoane et al., 2005; Carrascal et al., 2006; McPherson
and Jetz, 2007), butterflies (Pöyry et al., 2008) and trees (Guisan
et al., 2007). A low model accuracy was reported for fast growing,
early successional tree species (Guisan et al., 2007) and locally
scarce and inconspicuous bird species (Seoane et al., 2005). In
contrast, Carrascal et al. (2006) found poor models for ubiquitous
species, as well as species with very variable distributions,
i.e. expanding/shrinking with climatic fluctuation. Distribution
models for butterflies revealed a better predictive performance for
large, more easily detectable, and less mobile species that are less
influenced by stochasticity. Furthermore, the habitat in which
species predominantly occur also influences the predictive power
of distribution models (Pöyry et al., 2008).

It is evident, therefore, that the knowledge of the relationship
between plant species traits and the predictive performance of
SDMs is poor and requires further examination (Guisan et al.,
2007). In our study, we use a standard distribution modelling
technique and a widely used species distribution dataset to test
the relationship between model performance and plant species
traits. We hypothesise that the following traits will affect the
quality/predictive performance of plant species distribution
models:

� Life span/life form: The absence of short-lived species in a
mapping unit may result from true climatic unsuitability but
may also be caused by the failure to detect the species or by
the absence of natural habitat in the mapping unit (e.g.
following human disturbance) (Guisan and Thuiller, 2005). The
distribution and occurrence of long-lived and conspicuous
species are more likely to be recorded (Seoane et al., 2005). As
modelling accuracy improves with data quality, we hypothe-
sise that SDMs for these species will have a greater predictive
power.
� Ecological strategy type (after Grime, 1979)/habitat depen-

dence: Species ranges are not only restricted by environmental
parameters but by biotic interactions (Gaston, 2003). We
hypothesise that a slow growth rate and a good competitive
ability promotes filling of the climatic niche and a longer
persistence in the landscape and thus improves the predictive
performance of SDMs (Guisan et al., 2007); or vice versa:
if the occurrence of a species is prevented by competition
with another species and the SDM does not include the
interaction, it will tend to overestimate the species distribution
(McPherson and Jetz, 2007). We also hypothesise that species
with a lower competitive ability are associated with specific
habitat types (e.g. extreme habitats, disturbances, pioneer
species). The absence of such species may not indicate unsuit-
ability and SDMs will therefore have a lower predictive quality.
� Dispersal type: It is assumed that trees (Svenning and Skov,

2004) and forest herbs (Svenning et al., 2008) in Europe have
not yet reached their post-glacial equilibrium with climate.
Species with low dispersal ability may not have filled their
climatic niches and thus the predictive performance of these
SDMs is reduced.

� Pollination type: Relative frequencies of pollination types are
dependent on specific climatic and non-climatic factors (Kühn
et al., 2006). Insect pollination is strongly dependent on land
use, topology and geology (Kühn et al., 2006), wind pollination
is facilitated by open vegetation (Culley et al., 2002) and a
moderate wind speed (Whitehead, 1983) and selfing is
regarded to be favoured when the environment is variable
(e.g. due to disturbances), climatic conditions are poor or
mates are absent (Baker, 1955). Dependence of a pollination
type on non-climatic parameters or climatic parameters
commonly not included in SDMs (e.g. wind speed, disturbance)
would probably reduce predictive performance of SDMs for
species having this pollination type.
� Niche width/habitat tolerance: Beside the prime importance of

growth rate, Guisan et al. (2007) reported a low predictive
performance for generalist trees, i.e. trees with wider elevation
ranges. We hypothesise that this holds for other plant species
with a low degree of specialization. The lack of ecological
contrast among occupied and unoccupied mapping units
should constrain a statistical description of the species’
distribution.

Methods

Data

Species distribution data of vascular plants were obtained from
the Atlas Florae Europaeae database (AFE) maintained by the
Botanical Museum, University of Helsinki, at a resolution of
50 km�50 km. Species traits were derived from BiolFlor (Klotz
et al., 2002), a database of biological and ecological traits for
Central European plant species and from a dataset on dispersal
type (Frank and Klotz, 1990). We extracted all AFE species with
available trait information. We used the following traits to
address our hypotheses: dispersal type, life span, life form,
pollination type, strategy type, number of vegetation units a
species is affiliated to and hemerobic level (see Table 1 for
details). Although the BiolFlor database covers Central Europe
only, we associated the data with models covering the whole of
Europe, as the chosen traits are generally stable and show low
intraspecific variability. Hence, this spatial mismatch should not
influence the results. The AFE database covers approximately 20%
of the European flora but does not provide distribution data on
some species rich herb families such as Asteraceae, Poaceae,
Cyperaceae and Fabaceae. Preliminary tests for regions with
known distributions of the full flora revealed that our modelled
species are generally adequate to represent the trait compositions
of the whole flora (Hanspach et al., unpublished). Species with
less than 50 presences or absences in the AFE database were
excluded to allow for reliable modelling (Kadmon et al., 2003).
Data on recent climate (1961–1990) were taken from Mitchell
et al. (2004) and were aggregated from the original resolution of
10 min�10 min onto the 50 km�50 km resolution of the AFE
data. We derived a set of 17 standard climatic variables (see
Appendix Table 1).

Modelling of species distribution

We used generalized linear models (GLMs) with a binomial
error distribution to model the distribution of 638 plant species.
Recently, authors have suggested that several methods be
combined in an ensemble to minimize algorithmic errors (Araújo
and New, 2007; Marmion et al., 2009). GLMs are, however, among
the methods with a good performance (Elith et al., 2006). They are
more robust to overfitting and have a better transferability or
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