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a b s t r a c t

A non-planar surface deformation model based on B-splines as finite elements is presented here. The
model includes the variational formulation, the system of ordinary differential equations derived from it
and its analytical solution. Themodel has been checked for a variety of surfaces such as tiles, half spheres,
planes, etc. Furthermore, we are able to solve the system analytically by only moving a reduced number
of control points to deform the surface. This makes the method faster, since numerical methods are no
longer necessary.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Deformation models include a large number of applications
that have been used in fields such as edge detection and
image segmentation [1,2], computer animation and graphics [3,4],
geometric modeling [5,6], cloth and material simulation [7–12],
medical simulation [13,1], face synthesis [14,15,3,13], and so on.
Due to the applications that derive from object deformation, it is
one of the most active topics in computer graphics today.

Awide range of applications are covered by deformablemodels,
which were introduced in 1987 by Kass et al. in 2D as explicit
deformable contours [16] and generalized to 3D by Terzopoulos
et al. [17]. Since then, different approaches have been used in order
to represent them and their dynamic simulation. An excellent
early survey on modeling of deformable objects in computer
graphics can be found in [18] and on Free-Form Deformation (FFD)
techniques in [19]. The geometric methods [5,6] are the most
commonly used in FFD, a term first used by Sederberg and Parry
in [20]. In [21], a review on deformable surface representation
and deformable models evolution can be seen. Recent advances in
mesh deformation and editing techniques are presented by Botsch
and Sorkine in [22].

However, despite the existence of large numbers of techniques
to represent deformable objects and solve the evolution equations
associated with the simulations, the most used techniques
remain finite elementmethods [23–25,12,22].Many finite element
methods have been used in the modeling of deformable objects,
as can be seen in the Botsch survey: from the Lagrange finite
elements [26,4], to the finite elements of Bogner–Fox–Schmit [27]
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or the recently introduced finite element based on B-spline
functions [28,29].

Höllig [28] was the first to introduce the use of uniform
B-splines and their properties as finite elements in order to solve
partial differential equations. B-splines are piecewise polynomial
functions with good local approximation properties for smooth
functions and with local support [30]. B-splines were introduced
across the Bézier polynomial functions; Carl deBoor [31], Kauss
Höllig et al. [32] and Risler [33] studied the spline surfaces. Later,
Piegl and Tiller wrote The NURBS Book [30], where B-splines
are presented as the basis of NURBS functions. The definition
of Uniform B-splines was presented in different contexts in [31,
34,30,28]. Using B-splines, Isogeometric Analysis (IgA) [35] is
introduced with the purpose of accelerating numerical analysis
and to closely link Computer Aided Design (CAD) and Computer
Aided Engineering (CAE) [36]. With this [37] shows that using
IgA an object can be obtained regardless of how coarse the
discretization and the mesh refinement is. This makes it possible
to eliminate the need to communicate with the CAD geometry.
The basic idea of IgA is to use CAD basic functions, for example
NURBS [38], in a numerical analysis context. Other authors have
used splines (B-splines, Uniform B-splines, web-splines, NURBS) in
a numerical analysis context (see [28,21]). Höllig used web-spline
functions as the basis of a finite element space [28], Awanou et al.
in [39] used finite elements based on B-splines to fit scattered
data using numerical solutions of partial differential equations
and Nguyen-Thanh in [36], shows that NURBS-based isogeometric
analysis is inefficient in refinement and introduces the Bézier and
B-spline functions in the IgA.

There are many ways to define B-splines and uniform B-
splines and obtain their properties. It can be achieved by using
divided differences of the truncated power function (see [31]),
by blossoming or polar form that can be found in [40], or by
using the recurrence relations. The recurrence relations were first
used by Gordon and Riesenfeld in 1974 and can be found, for
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instance, in [34,30]. For its computational simplicity, this last
method is themost used in CAD, CAGD (Computer AidedGeometric
Design), CAE or CAM (Computer Aided Manufacturing). In this
work we consider only uniform knots and uniform B-splines, then
we use the recurrence definition given by Höllig in [28], which is
appropriate for multivariate approximation and also simple, from
a computational point of view.

The CAD/CAE concept is hardly a new one. It was not started
by Höllig [28] but has its origins in the early 1970s. As pointed
out, the solution to problems governed by differential equations,
such as the development of equations for deformable models, is
addressed by finite element methods (FEM). Conventional FEM
uses standard shape functions [41–43], that often require high
degrees of freedom (DOF) for a specified accuracy, thus causing
a considerable increase in complexity and, consequently, a delay
in design tasks that require repeated computations [44]. In order
to reduce the number of DOFs required, competitive methods
have been designed. A relevant review of such methods and their
relation with CAD/CAE integration tasks can be found in [44]. The
main drawback of FEM techniques is their high computational
costs. In this work, we present a mathematical technique that
is able to deform non-planar parametric surfaces with a low
computational cost; see [29,45,46] for previous work. Although
the methodology used here is similar, the deformed surfaces
and the numerical techniques that have been implemented are
different. Previously [45] we used Mathematica in order to
obtain the numerical examples, but in some cases we found that
Mathematica was not able to find a solution to our problem
and results were unsatisfactory. Also, a detailed study of the
numerical cost and a comparison between the numerical and
analytical solutions is presented. The numerical techniques used
allow for more complex and higher resolution deformed surfaces.
The mathematical model is similar to the model used by Cohen
in [27] and the generalization developed by Terzopoulos in [47].
In [27] the classical Bogner–Fox–Schmidt finite elements are used
in order to solve the proposed model, and in [47] finite differences
are used. In our work, we use B-spline finite elements instead.
Classical finite elements are commonly used to solve models
that involve partial differential equations, but this requires big
data structures. On the other hand, the use of B-splines as finite
elements reduces the data structure of the model since only a
reduced number of control points of the surface are moved in
order to compute its deformation. Moreover, our model has the
advantage that it can be solved analytically.

This work is organized as follows. In Section 2, we define the
uniform B-splines used to introduce finite elements and present
their properties. Section 3 is devoted to the model of surface
deformation. First, the static model is presented showing the
variational formulation and the space discretization. The dynamic
evolutionmodel is next in this section and the equation associated
to the model is solved, taking into account some considerations
on mass and damping matrices. Finally, the computation of the
control points of the initial surface is explained. Section 4 is
devoted to analyze the computational cost of the describedmethod
and is compared to the analytical and numerical solutions. The
description of the programming tools developed in order to
display the simulations and the representation of B-spline surfaces
is addressed in Section 5. Also, several computed numerical
deformations are displayed using the evolution model, with
different surfaces and forces. The last section is devoted to
conclusions and future work.

2. B-splines and parametric surfaces with B-splines

B-splines are piecewise polynomial functions. It has been
verified, with other function approximation techniques [30] that

polynomials provide a good local approximation for smooth
functions. However, if large intervals are used, the approximation
accuracy can be very low, the accuracy of the approach could be
very low and local changes have a global influence. Therefore,
it is natural to use piecewise polynomials, defined on a fine
partition of the function domain. We have chosen B-splines as a
piecewise polynomial approximation because of its local support.
This property reduces the computational cost of the model.

Uniform B-splines can be defined in several ways [31,34,30,28].
In this work we have taken the definition given by Höllig in [28],
which is described next.

Definition 1. A uniform B-spline of degree n, bn, is defined by the
following recurrence formula:

bn(x) =

 x

x−1
bn−1(t)dt

starting with b0(x) =


1, x ∈ [0, 1[,
0, otherwise.

A uniform B-spline of degree n, bn, is positive on (0, n + 1)
and vanishes outside this interval, is (n − 1)-times continuously
differentiablewith discontinuities of thenth derivative at the break
points 0, . . . , n+ 1. More, it has a piecewise polynomial structure,
that is, bn is a polynomial of degreen on each interval [k, k+1], k =

0, . . . , n. Finally, two qualitative properties are noted: the B-spline
of degree n is symmetric, i.e., bn(x) = bn(n + 1 − x) and strictly
monotone on [0, (n + 1)/2] and [(n + 1)/2, n + 1] (see [28] for a
detailed account of these properties).

The previous definition is not well adapted for numerical
evaluations. In order to evaluate B-splines in a simple and
computationally fastmanner, the recurrence equation can be used.
This equation was given by De Boor [31] and Cox [48], and it is a
linear combination of smaller degree B-splines:

bn(x) =
x
n
bn−1(x) +

(n + 1 − x)
n

bn−1(x − 1). (1)

In order to construct the finite element bases, we will use
a scaled and translated uniform B-spline. They are defined by
transforming the standard uniform B-spline, bn, to the grid hZ =

{. . . , −2h, h, 0, h, 2h, . . .}, where h is the scaled step.

Definition 2. For h > 0 and k ∈ Z, the scaled and translated B-
spline of degree n, bnk,h, is defined by bnk,h(x) = bn( x

h − k).

As we can see, bnk,h are the B-splines on the grid hZ. Their linear
combinations are called cardinal splines of degree less than or equal
to n with grid width h. The support1 of this function is [k, k + n +

1] h. Moreover, on each grid interval Q = [l, l + 1] h exactly n + 1
B-splines are nonzero.

From Definition 1 we obtain that the first order derivative of a
degree n B-spline is given by

d
dx

bn(x) = bn−1(x) − bn−1(x) (2)

with bn(0) = 0 [28]. If we apply the transformation given in
Definition 2, the first order derivative of the transformed B-spline
is given by

d
dx

bnk,h(x) = h−1(bn−1
k,h (x) − bn−1

k+1,h(x)). (3)

[28]. We also need the derivatives of any order. Higher order
derivatives can be computed as a linear combination of lower
degree B-splines. The differentiation formula can be expressed in a
compact form as follows.

1 The support of a function f is the closure of the set where the function f is not
zero.
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