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a b s t r a c t

We revisit implicitization by interpolation in order to examine its properties in the context of sparse
elimination theory. Based on the computation of a superset of the implicit support, implicitization is
reduced to computing the nullspace of a numeric matrix. The approach is applicable to polynomial
and rational parameterizations of curves and (hyper)surfaces of any dimension, including the case of
parameterizations with base points. Our support prediction is based on sparse (or toric) resultant theory,
in order to exploit the sparsity of the input and the output. Our method may yield a multiple of
the implicit equation: we characterize and quantify this situation by relating the nullspace dimension
to the predicted support and its geometry. In this case, we obtain more than one multiple of the
implicit equation; the latter can be obtained via multivariate polynomial GCD (or factoring). All of
the above techniques extend to the case of approximate computation, thus yielding a method of
sparse approximate implicitization, which is important in tackling larger problems. We discuss our
publicly available Maple implementation through several examples, including the benchmark of a
bicubic surface. For a novel application, we focus on computing the discriminant of a multivariate
polynomial, which characterizes the existence of multiple roots and generalizes the resultant of a
polynomial system. This yields an efficient, output-sensitive algorithm for computing the discriminant
polynomial.

© 2012 Published by Elsevier Ltd

1. Introduction

Implicitization is the process of changing the representation of
a geometric object from parametric to algebraic, or implicit. It is
a fundamental operation with several applications in computer-
aided design (CAD) and geometric modeling. There have been
numerous approaches for implicitization, including resultants,
Groebner bases, and moving lines and surfaces. In this paper,
we restrict attention to hypersurfaces: Our approach is based on
interpolating the unknown coefficients of the implicit polynomial
given a superset of itsmonomials. The latter is computed bymeans
of sparse (or toric) resultant theory, so as to exploit the input
and output sparseness. Here is the main notion that formalizes
sparseness (see also Fig. 1).

Definition 1. Given a polynomial f =


a cat
a
∈ R[t1, . . . , tn],

ta = ta11 · · · t
an
n , a ∈ Nn, ca ∈ R, its support is the set {a ∈ Nn
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ca ≠ 0}; its Newton polytope N(f ) is the convex hull of its support.
All concepts extend to the case of Laurent polynomials, i.e. with
integer exponent vectors a ∈ Zn.

We call the support and the Newton polytope of the im-
plicit equation, implicit support and implicit polytope, respectively.
Its vertices are called implicit vertices. The implicit polytope is
computed from the Newton polytope of the sparse (or toric)
resultant, or resultant polytope, of polynomials defined by the
parametric equations. Under certain genericity assumptions, the
implicit polytope coincides with a projection of the resultant poly-
tope, see Section 2. In general, the implicit polytope is contained
in the projected resultant polytope, in other words, a superset of
the implicit support is given by the lattice points contained in the
projected resultant polytope. A superset of the implicit support can
also be obtained by other methods, see Section 1.1; the rest of our
approach does not depend on the method used to compute this
support.

The predicted support is used to build a numerical matrix
whose kernel is, ideally, one dimensional, thus yielding (up to
a nonzero scalar multiple) the coefficients corresponding to
the predicted implicit support. This is a standard case of sparse
interpolation of the polynomial from its values. When dealing with
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Fig. 1. Newton polytopes of F0, F1, F2 in Example 6.

hypersurfaces of high dimension, or when the support contains
a large number of lattice points, then exact solving is expensive.
Since the kernel can be computed numerically, our approach also
yields an approximate sparse implicitization method.

Ourmethod of sparse implicitizationwas sketched in [1], where
we presented an algorithm and some preliminary results on its
implementation. Its main drawback is that the kernel of thematrix
may be of high dimension. In this paper, we address this situation
by presenting techniques that alleviate this phenomenon. More
formally, we relate it to the geometry of the predicted support,
which is a superset of the true implicit support. Another reason for
obtaining a high-dimensional kernel is that the numeric evaluation
of the support monomials may not be sufficiently generic. We
study amethod to obtain the true implicit polynomial by taking the
greatest common divisor (GCD) of the polynomials corresponding
to at least two and at most all of the kernel vectors, or via
multivariate polynomial factoring.

Furthermore, we present our publicly available Maple imple-
mentation by offering several examples. We also explain how it
depends on other software, most notably the software computing
the resultant polytope and its orthogonal projection required for
predicting the implicit polytope.

Our main motivation is in changing the representation of
geometric (hyper)surfaces given parametrically by polynomial, ra-
tional, or trigonometric parameterizations. Our method automati-
cally handles the case of base points, so the user does not need to
examine whether the given parameterization induces base points
or not.

Here, we extend our method to amore general geometric prob-
lem, namely to computing the discriminant of a multivariate poly-
nomial, which is an important question with several geometric
applications. The vanishing of the discriminant characterizes the
existence of multiple roots of the given polynomial. This is a hard
computation, since explicit formulas only exist for low-degree
univariate polynomials. In general, one can reduce discriminant
computation to computing the resultant of a rather large sys-
tem, comprised of the polynomial and its partial derivatives, but
this is inefficient. Instead, we reduce discriminant computation
to sparse implicitization, thus obtaining an output-sensitive al-
gorithm, whose complexity depends on the size of the discrim-
inant’s Newton polytope. Moreover, this technique can be used
to compute discriminants of well-constrained systems as well as
resultants because the latter can be viewed as a special case of
discriminants.

The paper is organized as follows: Section 1.1 overviews previ-
ous work, and Section 2 describes our approach to predicting the
implicit support while exploiting sparseness. Section 3 presents
our implicitization algorithm based on computing a matrix kernel,
either exactly or approximately, and focuses on the case of high
dimensional kernels. Our Maple implementation is described in
Section 4, whereas Section 5 applies ourmethod to computing dis-
criminants. We conclude with future work. The Appendix contains
omitted examples and omitted results from examples in Section 5,
and further experimental results.

1.1. Previous work

If S is a superset of the implicit support, then the most direct
method to reduce implicitization to linear algebra is to construct
a |S| × |S| matrix M , indexed by monomials with exponents in S
(columns) and |S| different values (rows) at which all monomials
get evaluated. Then the vector p of coefficients of the implicit
equation is in the kernel of M . This idea was used in [1–4]; it is
also the starting point of this paper.

Our method of sparse implicitization was sketched in [1],
where the overall algorithm was presented together with some
results on its preliminary implementation, including the case of
approximate sparse implicitization. The emphasis of that work
was on sampling and oversampling the parametric object so as
to create a numerically stable matrix, and examined evaluating
the monomials on random integers, random complex numbers of
modulus 1, and complex roots of unity. That paper also proposed
ways to obtain a smaller implicit polytope by downscaling the
original polytope when the corresponding kernel dimension was
higher than one.

A similar approach was based on integrating matrix M = SS⊤,
over each parameter t1, . . . , tn [5]. Then p is in the kernel of M . In
fact, the authors propose to consider successively larger supports
in order to capture sparseness. This method covers polynomial,
rational, and trigonometric parameterizations, but the matrix
entries take big values (e.g. up to 1028), so it is difficult to control
its numeric corank, i.e. the dimension of its nullspace. Thus, the
accuracy of the approximate implicit polynomial is unsatisfactory.
When it is computed over floating-point numbers, the implicit
polynomial does not necessarily have integer coefficients. They
discuss post-processing to yield integer relations among the
coefficients, but only in small examples.

Approximate implicitization over floating-point numbers was
introduced in a series of papers. Today, there are direct [6,7]
and iterative techniques [8]. An idea used in approximate implici-
tization is to use successively larger supports, starting with a quite
small set and extending it so as to reach the exact implicit support.
Existing approaches have used upper bounds on the total implicit
degree, thus ignoring any sparseness structure. Our methods pro-
vide a formal manner to examine different supports, in addition
to exploiting sparseness, based on the implicit polytope. When the
kernel dimension is higher than one, one may downscale the poly-
tope so as to obtain a smaller implicit support.

Sparse interpolation is the problemof interpolating amultivari-
ate polynomial when information of its support is given [9, Ch.14].
This may simply be a bound σ = |S| on support cardinality; then
complexity is O(m3δn log n+ σ 3), where δ bounds the output de-
gree per variable, m is the actual support cardinality, and n the
number of variables. A probabilistic approach in O(m2δn) requires
as input only δ.

2. Implicitization by support prediction

This section describes how the implicitization problem can be
reduced to computing the sparse resultant of a polynomial system,
how we can compute the implicit polytope as a projection of the
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