Computer-Aided Design 45 (2013) 262-269

Contents lists available at SciVerse ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Zipper: A compact connectivity data structure for triangle meshes

Topraj Gurung ®*, Mark Luffel?, Peter Lindstrom P, Jarek Rossignac?

2 Georgia Institute of Technology, United States
b Lawrence Livermore National Laboratory, United States

ARTICLE INFO ABSTRACT

Keywords:
Triangle meshes
Mesh connectivity
Hamiltonian cycle
Differential coding

We propose Zipper, a compact representation of incidence and adjacency for manifold triangle meshes
with fixed connectivity. Zipper uses on average only 6 bits per triangle, can be constructed in linear
space and time, and supports all standard random-access and mesh traversal operators in constant time.
Similarly to the previously proposed LR (Laced Ring) approach, the Zipper construction reorders vertices
and triangles along a nearly Hamiltonian cycle called the ring. The 4.4x storage reduction of Zipper
over LR results from three contributions. (1) For most triangles, Zipper stores a 2-bit delta (plus three
additional bits) rather than a full 32-bit reference. (2) Zipper modifies the ring to reduce the number of
exceptional triangles. (3) Zipper encodes the remaining exceptional triangles using 2.5 x less storage. In
spite of these large savings in storage, we show that Zipper offers comparable performance to LR and other
data structures in mesh processing applications. Zipper may also serve as a compact indexed format for
rendering meshes, and hence is valuable even in applications that do not require adjacency information.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Zipper, introduced here, is a compact representation for man-
ifold triangle meshes with fixed connectivity. It is a randomly-
accessible-and-traversable (RAT) mesh representation: it provides
constant-time retrieval of any triangle, vertex, or corner (equiv-
alently half-edge) in the mesh, and also supports constant-time
access to the consecutive vertices around a triangle and to the con-
secutive incident triangles around a vertex.

Popular polygon representations such as the Half-Edge repre-
sentation use 48 bpt (bits per triangle) to represent the geometry
(using three 32-bit floats per coordinate) and 528 bpt to represent
the connectivity [1], as discussed in Section 2.2. The most compact
existing triangle RAT, BELR (bit-efficient LR) [2], uses 26 bpt on av-
erage for connectivity. It reorders most vertices and triangles along
a ring (a nearly Hamiltonian cycle) and stores one reference for
each normal triangle and up to 15 references for each exceptional
triangle.

Zipper uses a similar reordering, but represents most vertex
indices in normal triangles using differential coding, which reduces
storage for most triangles to only a 2-bit delta and 3 additional
bits, and uses 2.5x less storage for exceptional triangles. It stores
connectivity using only 6 bpt (on average over tested models), and
hence provides a 4.4 x improvement over BELR.

* Corresponding author.
E-mail address: topraj@gmail.com (T. Gurung).

0010-4485/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2012.10.009

This storage decrease is remarkable, because it improves by
4.4x on the best results achieved over the past 40 years by experts
across many research areas. By comparison, these earlier efforts
have seen a decrease in storage of 17x from 432 bpt [3] to
26 bpt [2]. Zipper uses only an equivalent of a fifth of a 32-bit
reference per triangle to store enough information to access (in
constant time) not only the three vertices of each triangle, but also
its three neighboring triangles, as well as one incident triangle for
each vertex.

Our Zipper implementation of the standard mesh traversal
operators not only has constant-time complexity, but is very fast
(7-40 ns per operator). When executed on a small mesh, the basic
operators for mesh access and traversal in Zipper are faster than
those in BELR, but about 1.8 x-3.6 x slower than their counterparts
in the optimized standard LR. However, the impact of this overhead
on the performance of an application is often negligible when
compared to other processing costs, and is more than compensated
by performance gains resulting from fewer page faults when
processing large meshes that do not fit in memory.

Zipper is significantly more compact than the commonly used
triangle strip/fan or indexed formats. Hence, it is also a good
candidate for applications (such as rendering) that do not require
adjacency information.

2. Prior art
2.1. Corner operators

Many mesh processing algorithms may be formulated using
operators that access the next vertex around a triangle or the next

http://dx.doi.org/10.1016/j.cad.2012.10.009
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:topraj@gmail.com
http://dx.doi.org/10.1016/j.cad.2012.10.009

T. Gurung et al. / Computer-Aided Design 45 (2013) 262-269 263

Fig. 1. The standard corner operators associate with corner c its vertex c.v, triangle
c.t, and next c.n and opposite c.o corners. The other corner operators, previous c.p,
swing c.s, unswing c.u, left c.l, and right c.r are derived from c.n and c.o. In addition,
v.c returns one corner of vertex v, and t.c returns one corner of triangle t.

triangle around a vertex. In this paper we use triangle corners [4],
which uniquely identify a triangle and one incident vertex, to mark
a specific spot on the connectivity graph of the mesh and to serve
as a mesh traversal primitive. Hence, our mesh traversal operators
manipulate corners, their vertices and their triangles. Note that an
equivalent set of operators may be defined in terms of half-edges
(also called edge-uses or darts) [1,5], because one may trivially
establish a mapping between corners and half-edges.

RAT mesh representations support the standard set of corner
operators [6], defined below. The operators provide a simple
mechanism to access all vertices, triangles, and corners in constant
time from their IDs or from adjacent elements.

Given a corner c, the standard corner operators (see Fig. 1) are:
the triangle c.t of c, the vertex c.v of c, the next corner c.n in c.t,
the opposite corner c.o defined such that c.n.v = c.o.n.n.v and
c.n.n.v = c.0.n.v, a corner t.c of triangle t, and a corner v.c of
vertex v. From these, we define a set of derived corner operators:
the previous corner c.p = c.n.ninc.t, the left c.I = c.n.o and right
c.r = c.p.o neighboring corners of c, and the swing c.s = c.L.n
and unswing c.u = c.r.p corners used to walk around c.v. In this
paper we focus on efficiently encoding c.v and c.o—the remaining
operators can be inferred trivially (see [2]).

Early boundary graph representations of connectivity [1] use
32-bit memory pointers. Some of the more recent representations
(for example [4]) assign consecutive positive integers to vertices,
triangles, and corners, and use arrays to store sorted lists of
references (32-bit integer indices), rather than pointers, which,
for example, identify a triangle incident upon a vertex, the three
vertices of a triangle, or the three opposite corners in adjacent
triangles.

To simplify our algorithms and representation, as others have
done in the past, we assume the mesh is manifold. Furthermore,
our storage and performance statistics are only representative of
meshes where the genus and the number of border edges are small
relative to the number m of vertices. With these assumptions, there
are roughly n = 2m triangles and 3m edges. So, if a representation
uses a total of nr references, we say that its storage cost is 32r bpt
(bits per triangle) or r rpt (references per triangle).

To reduce connectivity storage, some representations reorder
vertices, corners, or triangles. For example, ECT (the Extended
Corner Table) [4,6] encodes connectivity in 6.5 rpt, by assigning the
three corners of a triangle consecutive numbers that are consistent
with the orientation of the triangle. This assumption makes it
unnecessary to store several of these look-up tables, because their
content may be computed in constant time when needed: c.t =
lc/3],ccn = 3ct + (c + 1 mod 3), t.c = 3t. Even with
this improvement, connectivity accounts for up to 90% of the
total storage when using 16-bit quantized coordinates to represent
geometry.

2.2. General representations

Early representations use much storage, because they cater to
more general (polygonal or higher-dimensional) meshes.

Brisson’s cell-tuple structure [7] generalizes the quad-edge
data structure of Guibas and Stolfi [8], which was restricted
to 2-manifolds without boundaries, and the facet-edge data
structure of Dobkin and Laszlo [9], which catered to subdivisions
of 3-manifolds. It is restricted to subdivided manifolds with or
without boundary. When applied to triangle meshes, the cell-tuple
structure associates each triangle t with 6 groupings (n-tuples),
each one corresponding to a choice of three entities (v, e, t): the
triangle t, an edge e of t, and a vertex v of e. There are 6 groupings
for each triangle because one has 3 choices for e and then 2 choices
for v. With each grouping g = (v, e, t), one stores a reference
to triangle t and to vertex v, plus three references to adjacent
groupings: so(g) returns grouping (v’ e, t), where v’ is the other
vertex of e; s;(g) returns grouping (v, €, t), where €’ is the other
edge of t that is incident upon v; and s,(g) returns grouping
(v, e, t'), where t’ is the other triangle incident upon e. To support
the standard operators, one also stores, for each triangle and for
each vertex, a reference to one of its groupings. Hence, the total
storage cost for connectivity is 31.5 rpt: 6 tuples per triangle that
store 5 references each (vertex, triangle, and 3 swaps), plus a tuple
reference for each vertex and triangle.

In the cell-tuple structure, groupings g, So(g), s2(g), and
So(s2(g)) refer to the same edge. The popular Winged-Edge
representation [3] combines them into a single edge, with which
it associates references to its two bounding vertices, to its two
incident triangles, and to the previous and the next edge in each
triangle. To be compatible with the RAT operators supported by
other schemes, we also assume that it stores a reference to a
winged-edge for each triangle and each vertex, so as to support the
v.c,t.c,and c.t operators in constant time. Adding these references
pushes the extended winged-edge storage cost to 13.5 rpt.

The Half-Edge representation [1] associates with each half-edge
a reference to the next, the previous and the opposite half-edge,
together with a reference to a bounding vertex and incident face
for a storage cost of 5 references per half-edge, or 15 rpt. Adding
support for t.c and v.c for their half-edge counterpart yields a total
cost of 16.5 rpt. The Surface-Mesh representation [10] uses half-
edges, but reorders them so that opposite ones are consecutive,
which eliminates one reference per half-edge. Surface-Mesh also
does not store a reference to the previous half-edge in a triangle.
Hence, its resulting storage cost is 10.5 rpt.

Star-vertices [11] stores for each vertex a radially sorted list of
references to neighboring vertices. It also stores the reference to
where that list starts. To make it compliant with our definition
of RAT, we must add a reference from each triangle to one of its
vertices or half-edges (equivalent to t.c) and a reference from each
half-edge to its incident triangle. Hence the total cost includes an
average of 6 references to neighboring vertices from each vertex
(two per edge or equivalently 3 rpt), one reference per half-edge to
an incident triangle (that amounts to 3 rpt), a reference per vertex
to the start of the list (1 per vertex, or equivalently 0.5 rpt), and
1 rpt for t.c. Hence, the total storage for a RAT compatible star-
vertices mesh is 7.5 rpt.

2.3. Representations for triangle meshes

Representations restricted to triangle meshes exploit the
regularity of the connectivity (3 vertices per triangle and 3
neighbors per interior triangle) and reorder triangles, edges, and/or
vertices.

The Directed Edge representation [12] is identical to the Corner
Table [4], when considering a bijection between half-edges and

Download English Version:

https://daneshyari.com/en/article/440151

Download Persian Version:

https://daneshyari.com/article/440151

Daneshyari.com

https://daneshyari.com/en/article/440151
https://daneshyari.com/article/440151
https://daneshyari.com

