
Computer-Aided Design 45 (2013) 288–300

Contents lists available at SciVerse ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Direct rendering of Boolean combinations of self-trimmed surfaces
Jarek Rossignac a, Ioannis Fudos b,∗, Andreas Vasilakis b

a School of Interactive Computing, College of Computing, Georgia Tech, Atlanta, GA 30332, USA
b Department of Computer Science, University of Ioannina, GR45110 Ioannina, Greece

a r t i c l e i n f o

Keywords:
Rendering
CAD
Trimming
GPU
Capping
Clipping
Animation
Solid modeling
CSG

a b s t r a c t

We explore different semantics for the solid defined by a self-crossing surface (immersed sub-manifold).
Specifically, we introduce rules for the interior/exterior classification of the connected components of the
complement of a self-crossing surface produced through a continuous deformation process of an initial
embedded manifold. We propose efficient GPU algorithms for rendering the boundary of the regularized
union of the interior components, which is a subset of the initial surface and is called the trimmed
boundary or simply the trim. This classification and rendering process is accomplished in real time through
a rasterization process without computing any self-intersection curve, and hence is suited to support
animations of self-crossing surfaces. The solid bounded by the trim can be combined with other solids
and with half-spaces using Boolean operations and hence may be capped (trimmed by a half-space) or
used as a primitive in direct CSG rendering. Being able to render the trim in real time makes it possible
to adapt the tessellation of the trim in real time by using view-dependent levels-of-detail or adaptive
subdivision.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Rendering boolean combinations of self-crossing surfaces in
real time is central to a number of applications such as animation
of deforming objects, preview of CAD operations and collision
detection. FFD (free-form boundary deformations) is a popular
paradigm for designing 3D shapes. FFD affords an intuitive direct
manipulation and seems most appropriate for editing medical and
artistic models or animations. The designer may for example use
3D input devices to grab, pull, and twist the 3D model in natural
and predictable ways to create self-intersecting surfaces [1].
Unfortunately, FFD lacks a useful semantics of what happens
when the designer wishes to create a self-intersecting surface
model. One may argue that in a static model, the user could be
asked to select which manifold portions of the surface should be
removed by clicking on them. We offer a semantics that makes
this selectionprocess unnecessary.More importantly, ifwewant to
apply these topological changes to an animated model, we cannot
expect the user to perform these selections at each frame. We
need a semantics for performing these selections automatically in
a manner that is coherent over time and that is compliant with
the results that would be obtained through CSG operations. This
paper introduces a framework for treating self-trimmed surfaces
as first class citizens, allowing us to use them as CSG primitives

∗ Corresponding author.
E-mail address: fudos@cs.uoi.gr (I. Fudos).

Fig. 1. We show the original manifold boundary S0 (left), a frame St produced by
continuously deforming S0 (we use pink to illustrate the part of the surface that
should be trimmed) (center) and the trimmed result T (St ) (right).

or to show their cross-sections (intersections with a plane) using
capping. In this work, we formally define the problem, explore
rules that capture application semantics and provide efficient GPU-
rendering algorithms.

Formally, a surface S is manifold when it is a compact and
orientable two-manifold without boundary. We say that S is
self-crossing when its immersion contains non-manifold self-
intersection edges where S ‘‘passes through itself’’, as shown in
Fig. 1. Hence, two or more different points of S coincide at each
point of a self-crossing curve of the immersion. We say that S
is a boundary when S is the boundary of some solid (closed-
regularized point set) thatwe denote I(S) and call the interior solid
of S.

Consider an initial manifold boundary S0 that is not self-
crossing and a continuous process Dt that deforms this surface
while keeping it an immersed sub-manifold. Let St denote the
instance Dt(S0) of the deformed surface at time t. Assume that
St is self-crossing, then we say that St is a Self-Crossing Surface,

0010-4485/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2012.10.012

http://dx.doi.org/10.1016/j.cad.2012.10.012
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:fudos@cs.uoi.gr
http://dx.doi.org/10.1016/j.cad.2012.10.012


J. Rossignac et al. / Computer-Aided Design 45 (2013) 288–300 289

abbreviated SCS, i.e., a compact, immersed, and orientable surface
with transverse self-intersections. An example of the above setting
is illustrated in Fig. 1.

We explore here different semantics for defining the solid that it
represents, which we call its interior I(St), and hence also its trim,
T (St), which is the subset of St that is the boundary of I(St). We say
that T (St) is a Self-Trimmed Surface, abbreviated STS. The interior
along with the STS define a manifold or a non-manifold object.

In this context we identify two generic problems and devise
rules to capture them:
Problem I: Given an SCS (Fig. 1(b)) determine the trim (Fig. 1(c)).
Problem II: Given an initial manifold boundary S0 (Fig. 1(a)) and
a continuous process Dt that deforms this surface to an SCS St
(Fig. 1(b) determine the trim T (St) (Fig. 1(c)).

To address the first problem,we explore static rules that depend
only on the SCS and evaluate at least in simple cases how well
the results they produce match what we consider to be plausible
intentions of the designer.

The second problem corresponds to dynamic rules that depend
on the deformation history and the SCS. We are particularly
interested in formulations of T (St) that correspond to a designer’s
intuitive expectation of the sequence of results that should be
produced by a reasonable deformation Dt that creates several self-
crossings. In particular, we propose semantics that mimic locally
the natural behavior of incremental Boolean operations, where
self-crossings are created in St one at a time and each performs
a local union or intersection of shapes defined partially by two
portions of the previous frame St−1.

We also introduce practical and efficient GPU-based trimming
algorithms that render T (St) directly by scan-converting St and
St−1 (where t is the framenumber)without the need for computing
self-intersection curves. We do this by testing surfels, to establish
whether they lie on the boundary of I(St). Surfels are represented
by fragments of the surface that arise from the intersection of the
surface with a ray originated at the center of the corresponding
pixel of the viewing plane.

We claim three advantages of such a direct trimming and
rendering approach. The first advantage is the elimination of the
cost of computing self-intersection curves and of identifying the
faces (connected components that are cut out by these curves).
Such a cost would otherwise make it impossible to render the trim
during deformation animations or perform interactive editing. The
second advantage is the flexibility of being able to define St as the
result of a (possibly adaptive) subdivision process to be carried
out on the GPU. Finally, we can render on the GPU the result
of combining the interiors of two or more self-crossing surfaces
through CSG operations.

2. Background and problem definition

An SCS S partitions the 3D space W into open full dimensional
components Ci (i.e., themaximally connected components ofW−
S), one of which is infinite (denoted here by C0). Each component
is classified as either interior (also denoted as in), i.e., part of the
interior of the solid, or exterior (also denoted as out). The solid
I(S) represented by S is the closure of the union of all interior
components. Our objective is to define a rule that selects the
components of I(S). To obtain a bounded solid, C0 should not be
included, and hence is classified as out. Other components may be
classified as in or out, depending on the chosen rule.

The trim, T (S), is the boundary of I(S). Hence, trimming
amounts to discarding portions of S that separate either two
interior or two exterior components.

Various rules (semantics) may be used to associate a solid I(S)
with an SCS S. One may conceive interesting rules that compute
new bounding surfaces for solid I(S) (by for instance using the

convex hull of S or a visibility graph). Here, we focus on rules that
have the boundary diminishing property, which states that the
boundary T (S) of I(S)must be a subset of S. Note that this property
is satisfied by Boolean and regularized Boolean operations [2,3].

In 2D, the index (also called winding number) w(p, C) of an
oriented, closed-loop, self-crossing curve C around a given point
p that is not on C is an integer representing the total number of
times the curve travels counter-clockwise around the point. The
winding number depends on the orientation of the curve, and
is by convention negative if the curve travels around the point
clockwise. All points in a given component (maximally connected
component of the complement of C) have the same winding
number. The infinite component has winding number 0. One may
easily keep track of thewinding number by propagating it fromone
component to an adjacent one. Crossing the curve once increments
or decrements the winding number, depending on the orientation
of the curve relative to the direction of the crossing.

In three dimensions, the indexw(p, S) of a point pwith respect
to an SCS S may be defined as follows.We assume that p is not on S.
Consider anypath P from infinity to p. Let ki be the number of times
that P enters S (i.e., crosses the boundary in a direction opposite to
the outward normal) and ko be the number of times that P exits S
(i.e., crosses the boundary in a direction confluent to the normal).
Then, w(p, S) = ki − ko. Fig. 2 shows an SCS cross section (green
self-crossing polyline) with the triplet (ki, ko, w(p, S)) indicated
for each area, where ki and ko were computed from the left. Note
that points of the same component may have different ki and ko
(for example when counting from the bottom) but they have the
same index.

For conciseness, we denote w(p, S) by w(p) or by simply w.
Heisserman [4] provides an equivalent definition of the index
(winding number) as the number of times the surface encloses a
point.

Note that in situations where P simultaneously crosses several
neighborhoods of S, the crossing of each neighborhood must be
accounted for separately.

The index is the signed generalization of the overlap count
which is defined as the unsigned count of the number of surfels
that correspond to a pixel and is used in rendering to determine
the transparency effect. Note that the index is in general not equal
to the overlap count, which is defined at a point p as the number of
times a specific ray from p to infinity hits the surface.When the ray
is aimed at the viewpoint, the overlap count may be computed on
the GPU for each pixel and used to control transparency effects.
Note that the parity of the overlap count is independent of the
direction of the ray, identical to the parity of the index, and
constant throughout a component.

We want to use the fragments (depth, color, and normal values
of S associated with points of T that project on a pixel center)
that are generated by this rasterization to render scenes where
I(S) is capped [5,6] and combined with other shapes through CSG
operations [7,8]. Capping returns the intersection of I(S)with a 3D
region R that is the intersection or the union of (usually) linear half-
spaces and displays the caps, i.e., the portions of the boundary of R
in I(S).

3. Prior art

Interior Visualization. Different techniques have been proposed for
visualizing the interior and hidden portions of solids or assemblies.
Hidden edges and silhouettes may be overlaid with a shaded
rendering of the visible surfaces [9]. Surface transparency and
depth ordering [10] may be used to modulate the color based on
the translucent surfaces seen through a pixel. Volume rendering
may be used to modulate color based on the thickness of solid
layers traversed by a ray from the viewpoint (see e.g. [11]).



Download English Version:

https://daneshyari.com/en/article/440154

Download Persian Version:

https://daneshyari.com/article/440154

Daneshyari.com

https://daneshyari.com/en/article/440154
https://daneshyari.com/article/440154
https://daneshyari.com

