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a b s t r a c t

Periodic centroidal Voronoi tessellation (CVT) in hyperbolic space provides a nice theoretical framework
for computing the constrained CVT on high-genus (genus > 1) surfaces. This paper addresses two com-
putational issues related to such a hyperbolic CVT framework: (1) efficient reduction of unnecessary site
copies in neighbor domains on the universal covering space, based on two special rules; (2) GPU-based
parallel algorithms to compute a discrete version of the hyperbolic CVT. Our experiments show that with
the dramatically reduced number of unnecessary site copies in neighbor domains and the GPU-based par-
allel algorithms, we significantly speed up the computation of CVT for high-genus surfaces. The proposed
discrete hyperbolic CVT guarantees to converge and produces high-quality results.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The centroidal Voronoi tessellation (CVT) [1] is a special type
of Voronoi diagram, where every site coincides exactly with the
centroid of its Voronoi cell. The celebrating Gersho’s conjecture [2]
in 2D, proved by Tóth [3], states that the shape of the Voronoi cells
converges to uniform regular hexagons when the CVT is optimized
globally. This property inspired many researchers to compute the
constrained CVT [4] on surfaces, for applications where a uniform
sampling or remeshing of the surface is desired.

Different methods of computing constrained CVT on surfaces
can be roughly categorized into two classes: ‘‘extrinsic’’ and
‘‘intrinsic’’ approaches. Extrinsic approaches [4–6] compute an
Euclidean Voronoi diagram in the ambient 3D space and its inter-
section of a surface, with sites constrained on the surface. If two
regions of the surface are close in the 3D space but far away along
the surface, the computed constrained CVT on surface tends to be
incorrect [7,8].

Intrinsic approaches [9,7,8], which overcome the above limi-
tations of their extrinsic counterparts, compute the CVT in a 2D
parameter domain of a surface, with a density function applied to
compensate the introduced area distortion of surface parametriza-
tion. To allow sites move freely across artificially cut open surface
boundaries on its parameter domain for non-topological disk sur-
faces, Rong et al. [8] proposed to compute the CVT in a 2D pe-
riodic parameter domain, called the Universal Covering Spaces of
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surfaces, which are 2D spaces with constant curvatures — spher-
ical, Euclidean, and hyperbolic spaces.

Computing a CVT in a 2D periodic parameter domain is
equivalent to computing a periodic CVT in its corresponding space.
Computing a periodic CVT in spherical and Euclidean spaces has
been well studied in previous literatures [4,10,11]. Thus the main
challenge resides in the efficient computation of the periodic CVT
in hyperbolic space. In this paper we propose several strategies
to speed up the computation of periodic CVT in hyperbolic space,
including two special rules to efficiently reduce the number of site
copies, and a GPU-based parallel computation framework of the
discrete hyperbolic CVT.

1.1. Preliminaries

We first introduce briefly the concept of universal covering
space, and then present two definitions related to periodic CVT in
hyperbolic space.

A covering map is a surjective continuous map π from a
topological space Ū to another topological space U such that any
point p in U has a neighborhood N(p) satisfying π−1(N(p)) is a
collection of disjoint sets, and each set can be homeomorphically
mapped onto U by π . (Ū, π) is called the covering space of
U , and sometimes people simply denote it as Ū . (Ū, π) is the
universal covering space (UCS) of U if Ū is simply connected. A deck
transformation φ : Ū → Ū keeps the covering map π unchanged:
π = π ◦φ. All deck transformations form a so called Fuchsian group
G. A fundamental domain F of the UCS is a subset of Ū such that
Ū = ∪φ∈G φ(F). The UCS of a high-genus (genus > 1) surface can
be conformally embedded into a 2D hyperbolic space [12]. Fig. 1
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Fig. 1. Left: a point p on the surface is mapped to p̄ in the center domain by the
inverse coveringmapπ−10 , and p̄ can bemapped toπ−1j (p) in the neighbor domain j
by the deck transformationφj; Right: we can get the CVT result on a genus-2 surface
by computing a periodic CVT in the hyperbolic UCS.

shows a double-torus surface and its UCS embedded on hyperbolic
plane. We refer readers to Munkres’s book [13] for more details.

Definition 1. Let U be a surface and (Ū, π) be its UCS. Given a
point set S = {si ∈ U | i = 1, . . . , n} on U , the Voronoi diagram
in universal covering space of U induced by S can be defined as the
subdivision of Ū into Voronoi cells Ωucs

i :

Ωucs
i = {p ∈ Ū | dŪ(p, s̄i) < dŪ(p, s̄j),

∃ s̄i ∈ π−1(si),∀ s̄j ∈ π−1(sj),∀ j ≠ i}, (1)

where dŪ(·, ·) is the distance in space Ū .

Note that in the definition each point (or site) si is duplicated into
infinite number of copies via π−1. The fundamental domain is
periodically repeated in UCS, so a Voronoi diagram in UCS is also
a periodic Voronoi diagram (PVD).

Due to its periodicity, the PVD defined in (1) only needs to be
computed in one fundamental domain (referred as center domain
Ū0 later). Define the neighbor domains of Ū0 be the fundamental
domains which share at least one vertex with Ū0, denoted by Ūj,
j = 1, . . . , h, where h = 16g2

− 8g is the number of neighbor
domains for a genus-g surface. Useπ−1j (s) to denote the preimages
of site s in different fundamental domains (j = 0 for the center
domain and j = 1, . . . , h for neighbor domains). Let φj be such
a deck transformation that φj(s̄) = π−1j (s), where s̄ = π−10 (s)
(Fig. 1). Then we can refer to φj(s̄i), j = 1, . . . , h as the site copies
of site s̄i = π−10 (si) later for convenience.

This paper focuses on PVD in 2D hyperbolic space. There are
different models of 2D hyperbolic space, such as Poincaré disk,
Klein disk, Poincaré half-plane, and Minkowski model. All these
models are equivalent. In this paper we use the Poincaré disk
model to visualize the hyperbolic Voronoi diagram (see Fig. 1)
and the Minkowski model to define the centroid of a hyperbolic
region [8].

Definition 2. Given a region Ω on the Minkowski model, and
density ρ(p) for any point p ∈ Ω , the centroid of Ω is defined as:

c =
1
η


Ω

ρ(p)p dp, (2)

where

η =


Ω

ρ(p)pdp

M

. (3)

∥ · ∥M is the Minkowski norm which can be defined through its
inner product: ∥ · ∥M =

√
⟨·, ·⟩M .

Here the Minkowski inner product is defined as ⟨p, q⟩M = zpzq −
xpxq − ypyq for two points p = (xp, yp, zp) and q = (xq, yq, zq) on
the Minkowski model. Note that their hyperbolic distance can be
computed by dM(p, q) = cosh−1(⟨p, q⟩M).

Given a set of sites S = {si | i = 1, . . . , n} on the Minkowski
model, and its Voronoi diagram as Ω = ∪Ωi, where Ωi is the
Voronoi cell associated with site si, the hyperbolic CVT energy is
defined as:

E(S, Ω) =


i


Ωi

ρ(p) cosh(dM(p, si)) dp. (4)

With the above defined Voronoi diagram and centroid in
hyperbolic space, the hyperbolic CVT energy is proved to converge
with Lloyd’s algorithm [8].

1.2. Motivation and contribution

Rong et al. [8] proposed a nice periodic CVT framework in
hyperbolic space. However, two computational issues hinder their
algorithms from being practical for general high-genus surfaces.

The first issue is that they compute the part of PVD within a
center domain from a full site copies of the center domain and
its neighbor domains: {π−1j (si) | ∀si ∈ S, j = 0, . . . , h}, and
then the intersection of the resulting Voronoi diagram with the
center domain. Although the shape of periodic Voronoi cells inside
the center domain can be affected by the site copies located in
its neighbor domains, there are 16g2

− 8g neighbor domains for
a genus-g surface and only a small portion of the site copies in
them will affect the Voronoi cells near the boundary of the center
domain. In Section 3, We propose two simple rules, which can
be computed efficiently, to significantly reduce the number of
unnecessary site copies in neighbor domains.

The second issue is that computing a hyperbolic CVT is
extremely time-consuming. For example, computing 1000 sites on
a genus-3 Sculpture surface takes around 55 s for each Lloyd’s
iteration on a desktop computer with a Core 2 Duo 2.93 GHz CPU.
We can utilize the parallel computability of the programmable
GPU to accelerate this process. We first define a discrete version of
the hyperbolic CVT with each triangle represented by its centroid
and the constrained CVT approximated with clusters of triangles.
Our discrete CVT is similar to Valette et al. [14]. However, it is
formulated in a 2D periodic hyperbolic domain, with its discrete
CVT energy proved to converge.We then introduce a parallel mesh
flooding algorithm to efficiently compute the defined discrete
hyperbolic PVD in Section 4.2. We further show that the energy of
the discrete hyperbolic CVT is guaranteed to converge under our
GPU-based computational framework in Section 5.

The contribution of this paper can be summarized as:

1. Two computing efficient rules are introduced to reduce the
unnecessary site copies in neighbor domains for computing
hyperbolic PVD;

2. A GPU-based parallel mesh flooding algorithm is proposed to
compute the discrete hyperbolic Voronoi diagram.

Both of the two aspects serve for speeding up the computation of
hyperbolic CVT.

2. Related work

In this section,wegive a brief reviewof existing research related
to this work.



Download English Version:

https://daneshyari.com/en/article/440171

Download Persian Version:

https://daneshyari.com/article/440171

Daneshyari.com

https://daneshyari.com/en/article/440171
https://daneshyari.com/article/440171
https://daneshyari.com

