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Abstract

In this study, parametric bootstrap methods are used to test for spatial non-stationarity in the coefficients of 
regression models (i.e. test for relationship non-stationarity). Such a test can be rather simply conducted by 
comparing a model such as geographically weighted regression (GWR) as an alternative to a standard regression, 
the null hypothesis.  However here, three spatially autocorrelated regressions are also used as null hypotheses: (i) a
simultaneous autoregressive error model; (ii) a moving average error model; and (iii) a simultaneous autoregressive 
lag model.  This expansion of null hypotheses, allows an investigation as to whether the spatial variation in the 
coefficients obtained using GWR could be attributed to some other spatial process, rather than one depicting non-
stationary relationships. In this short presentation, the bootstrap approach is applied empirically to an educational 
attainment data set for Georgia, USA. Results suggest value in the bootstrap approach, providing a more 
informative test than any related test that is commonly applied.
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1. Introduction

The method of GWR [1] provides a means of exploration of a multiple linear regression (MLR) model in which 
the coefficients show a tendency to vary over space.  GWR is essentially spatial, in the sense that the value of a 
predicted response variable or a regression coefficient depends on the location in space. For the case where there are 
several predictor variables pyyy ,..., 21 and ni ,,1 , MLR has this form for response variable z :
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where the coefficients , are commonly estimated by ordinary least squares. MLR only models stationary 
relationships between the response and predictor variables.  Where these relationships are expected to change across 
space, MLR can be adapted to form the GWR model as follows:
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where ii vu , is the spatial location of the thi observation and iij vu , is a realisation of the continuous function 

vuj , at point i . As with (ordinary) MLR, the i ’s in GWR are random error terms which are independently 

normally distributed with zero mean and common variance 2 . Therefore a local regression is calibrated at any 
location i with observations near to i given more influence than observations further away by weighting them
according to some distance-decay function. Various methods have been proposed to assess the validity of GWR in 
comparison to MLR [1,2]. However GWR is only one of many spatial models. In particular, there are a number of 
models in which the z-variable or the error term exhibits spatial autocorrelation, although the regression coefficients 
remain fixed over space [3]. Among these models is the spatial simultaneous autoregressive error (ERR) model:
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where ijc is the thij element of a row-normalised connectivity matrix. The parameter controls the degree of 

autocorrelation in the error term i . Alternatively, the correlation between the i ’s could be confined to near 
neighbours as defined by the connectivity matrix, as in the spatial moving average (SMA) model:
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As before, governs the degree of spatial association. A further alternative is the spatial simultaneous 
autoregressive lag (LAG) model:
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In this case, each iz depends on the neighbouring z-values directly through the connectivity matrix and .
Although plays a qualitatively different role than in the previous models (since it directly connects the predictor 
variable rather than the error terms), it still governs the degree of autocorrelation.

Thus it would be useful to compare GWR not only to MLR, but also with ERR, SMA and LAG.  In this respect,
a bootstrapping method [4] is proposed that assesses the variability of locally weighted estimates of the regression 
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