
Computer-Aided Design 43 (2011) 1870–1878

Contents lists available at SciVerse ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Solving polynomial systems using no-root elimination blending schemes
Michael Bartoň ∗

KAUST — King Abdullah University of Science and Technology, Geometric Modeling and Scientific Visualization Center, Thuwal, Saudi Arabia

a r t i c l e i n f o

Article history:
Received 30 April 2011
Accepted 19 September 2011

Keywords:
Polynomial systems
Linear blend
No-root criterion
Surface–surface–surface intersection

a b s t r a c t

Searching for the roots of (piecewise) polynomial systems of equations is a crucial problem in computer-
aided design (CAD), and an efficient solution is in strong demand. Subdivision solvers are frequently used
to achieve this goal; however, the subdivision process is expensive, and a vast number of subdivisions is
to be expected, especially for higher-dimensional systems. Two blending schemes that efficiently reveal
domains that cannot contribute by any root, and therefore significantly reduce thenumber of subdivisions,
are proposed. Using a simple linear blend of functions of the given polynomial system, a function is
sought after to be no-root contributing, with all control points of its Bernstein–Bézier representation
of the same sign. If such a function exists, the domain is purged away from the subdivision process.
The applicability is demonstrated on several CAD benchmark problems, namely surface–surface–surface
intersection (SSSI) and surface–curve intersection (SCI) problems, computation of the Hausdorff distance
of two planar curves, or some kinematic-inspired tasks.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and previous work

Solving (piecewise) polynomial systems of equations is a crucial
problem in many fields such as computer-aided design, manufac-
turing, robotics and kinematics. A robust and efficient solution is
in strong demand. The symbolically oriented approaches such as
Gröbner bases and similar elimination-based techniques [1] map
the original system to a simpler one, preserving the solution set.
In contrast to this, polynomial continuation methods start at roots
of a suitable simple system and transform it continuously to the
desired one [2]. These methods are very general and give global
information about the solution set, regardless of the domain of in-
terest. Typically, they operate in Cn and when only real solutions
are sought; hence these methods can be inefficient.

The other approach is represented by a family of subdivision-
based solvers, which typically treat the equations of the system
as (parts of) hypersurfaces in Rn, and search for its (real)
intersection points inside some particular domain, usually a box
in Rn. The idea of a subdivision-based algorithm appeared in
the early 1980s [3,4], when new algorithms for the evaluation
of polynomial spline curves and surfaces were introduced and
recursively applied on the CAD benchmark problems such as
curve–curve and surface–surface intersections.

The interval projected polyhedra algorithm [5] employs
Bernstein–Bézier representations of polynomials and projects its
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control points into two-dimensional (2D) subspaces where corre-
sponding convex hulls are computed and intersected.

In order to reduce the number of computationally demanding
subdivision steps or improve the robustness of the subdivision
process, local preconditioning may be applied [6]. This technique
is considered only for well-constrained, or also squared, (n × n)
systems of equal-degree constraints. Various other methods for
solving squared systems exist, and many related references can be
found in [7].

For such systems, whose solution is, in general, a zero-variate
set, a termination criterion is presented in [8]. This geometrically
oriented scheme detects regions with at most one root and
allows the application of techniques such as the multivariate
Newton–Raphson method. Recently, the generalization for non-
polynomial (transcendental) systems was introduced in [9].
Nevertheless, even if there is at most one root inside the domain,
there is no guarantee that the Newton–Raphson method will
converge to that root. One could apply a stricter criterion such as
the Kantorovich condition [10] to avoid convergence failures in the
numerical improvement stage.

The complexity of subdivision-based solvers is exponential in
the dimension of the problem, when tensor product representa-
tions are used. In [11], expression trees are employed, reducing the
expected complexity to polynomial.

Another family of subdivision-based solvers relies on affine
or interval arithmetic [12]. These methods typically construct an
interval bound on values that the given function may attain over a
given domain. If the bound of some function of the system is a no-
zero-containing bound, the particular domain is discarded. With
these schemes, it is difficult to guarantee numerical stability during
subdivision, and no root isolations are offered.
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Another approach is based on the reduction of the original
n-dimensional system to a one-dimensional nonlinear equation;
see [13] and related work cited therein. Every function of the
system is evaluated at n − 1 variables and solved with respect
to the remaining one. The root of the univariate function and the
partial derivatives of fi, i = 1, . . . , n − 1 in the root are then
used as the coefficients of the linear system which computes the
improvement of the first n − 1 values. The process is iteratively
repeated, converging quadratically to the root.

Another iterative method was proposed in [14]. Every function
of the system is considered as an objective function. The goal is to
minimize these functions, and the problem is essentially reduced
to a multi-objective optimization problem. An evolutionary algo-
rithm is proposed and a sequence of candidates that approximate
the root is created. Similarly to [13], the process is iterative, and a
good initial guess is required to reach the root.

Recently, a general solver for overconstrained/well-constrained
/underconstrained systems of equations, relying on the repre-
sentation of polynomials in the barycentric Bernstein basis and
exploiting the projecting control polyhedra algorithm, has been
presented [15]. In the case of the zero-variate solution set, the se-
quence of n-dimensional root-containing bounding simplices is re-
turned.

If the system is underconstrained by one equation, having n
equations in n + 1 variables, the solution is, in general, a curve
in Rn+1. For this family of systems, a well-suited solver was
introduced in [16], generalizing the single solution criterion of [8]
from zero-variate to univariate solution spaces.

In this paper, the problem of solving well-constrained (n × n)
piecewise polynomial systems is considered and, in particular,
the main objective is focused on the reduction of the subdivision
process. The solver proposed here follows [8] and extends the
subdivision stage by two tests which are designed to speed up
the elimination process of the no-root-containing domains. From
n given constraints of the polynomial system, a linear blend (linear
combination) is constructed in two different ways:
1. A maximum altitude blend (MAB), which maximizes the

absolute value of the blending function in the midpoint of the
domain.

2. A minimum slope blend (MSB), which minimizes the slope of
the tangent hyperplane in the midpoint of the domain.

If the blending is successful, e.g. the blending function is strictly
positive (negative) inside the domain, the domain is discarded
from the subdivision process.

The rest of the paper is organized as follows. Section 2
briefly recalls the notions of a polynomial system, linear blend
(linear combination), and the Bernstein–Bézier representation of a
multivariate function. Section 3 introduces the maximum altitude
blend (MAB) and minimum slope blend (MSB) and discusses their
integration into the polynomial solver. Section 4 shows some
examples where the solver may be applied. Finally, Section 5
identifies some possible future improvements and concludes.

2. Preliminaries

This paper deals with solving well-constrained (piecewise)
polynomial systems and exploits Bernstein–Bézier’s representa-
tion ofmultivariate functions and their linear blends. A brief survey
of these topics will be given.

2.1. Bernstein’s representation and the root-finding problem

Any univariate polynomial of degree d over domain [α, β] ⊂ R
can be expressed with respect to the Bernstein basis as

f (x) =

d−
i=0

biBd
i (x, α, β), (1)

where

Bd
i (x, α, β) =


d
i


(x − α)i(β − x)d−i

(β − α)d
(2)

is the i-th Bernstein polynomial over interval [α, β]. Note that
Bd
i (x, α, β), i = 0, . . . , d form the basis of the (d+1)-dimensional

linear space of polynomials of degree at most d on [α, β]; see,
e.g., [17]. Real numbers bi are known as the Bernstein–Bézier
coefficients of f .

The generalization to the multivariate case is rather straight-
forward, so any polynomial f (x) = f (x1, . . . , xn) of degree di in
variable xi can be written as

f (x) =

d1−
i1=0

· · ·

dn−
in=0

bi1...inB
d1
i1

(x1, α1, β1) · · · Bdn
in (xn, αn, βn), (3)

and Bd1
i1

(x1, α1, β1) · · · Bdn
in (xn, αn, βn), i1 = 0, . . . , d1, . . . , in =

0, . . . , dn form the tensor product basis over domain D =

[α1, β1] × · · · × [αn, βn].

Theorem 2.1 ([17]). Let (bi1...in)0≤i1≤d1,...,0≤in≤dn be the Bernstein
coefficients of f (x) on D. If bi1...in > 0 (bi1...in < 0) for all feasible
indices, then f (x) > 0 (f (x) < 0) for all x ∈ D.

This sufficient condition of positivity (negativity) of a multivariate
polynomial directly follows the convex hull property [17], and
will be referred to as a sign exclusion test since only the signs of
Bernstein coefficients need to be checked.

We consider the problem of finding all simultaneous roots
of well-constrained (piecewise) polynomial systems over some D,
which is formally stated as follows.

Definition 2.2. Consider the mapping F : Rn
→ Rn, such that

each component fi, i = 1, . . . , n of F (x) = [f1(x), f2(x), . . . ,
fn(x)] is a (piecewise) polynomial function in variables x = (x1,
x2, . . . , xn). Then, every solution x of the system,

F (x) =
−→
0 , (4)

is called a root of F , and the set of all roots is known as the zero set
of the mapping F .

2.2. Linear blending of polynomial functions

Definition 2.3. Consider System (4). We call

a(x) = a1f1(x) + a2f2(x) + · · · + anfn(x), (5)

a = (a1, a2, . . . , an) ∈ Rn, a blend of F and a unit blend if ‖a‖2 = 1,
where ‖.‖2 represents the Euclidean norm.

Remark 2.4. If no misunderstanding can occur, we refer to both
the function a(x) and the vector (a1, a2, . . . , an) as a blend.

Definition 2.5. We say that blend a is no-root contributing in
domain D if either

a(x) > 0, ∀x ∈ D, (6)

or

a(x) < 0, ∀x ∈ D. (7)

Clearly, if there exists a no-root-contributing blend, system (4)
has no real roots. By contradiction, if there is a root r ∈ D, fi(r) = 0
for all i = 1, . . . , n, then Eq. (5) gives a(r) = 0, which violates the
assumption that a is no-root contributing.

Example 2.6. Forn = 2, system (4) is visualized as the intersection
problem of two planar algebraic curves, over domain D =

[−1, 2] × [−1, 2]; see Fig. 1. A sequence of 15 different linear
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