Computer-Aided Design 44 (2012) 709-720

Contents lists available at SciVerse ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Computing parameter ranges in constructive geometric constraint solving:
Implementation and correctness proof

Marta Hidalgo, Robert Joan-Arinyo *

Grup d’'Informatica a 'Enginyeria, Universitat Politécnica de Catalunya, Diagonal 649, 8¢, Barcelona 08028, Catalonia

ARTICLE INFO

ABSTRACT

Article history:
Received 8 November 2011
Accepted 29 February 2012

Keywords:

Parametric-based CAD
Geometric constraint solving
Parameter range computation
Configuration space

In parametric design, changing values of parameters to get different solution instances to the problem
at hand is a paramount operation. One of the main issues when generating the solution instance for the
actual set of parameters is that the user does not know in general which is the set of parameter values
for which the parametric solution is feasible. Similarly, in constraint-based dynamic geometry, knowing
the set of critical points where construction feasibility changes would allow to avoid unexpected and
unwanted behaviors.

We consider parametric models in the Euclidean space with one internal degree of freedom. In this
scenario, in general, the set of values of the variant parameter for which the parametric model is realizable
and defines a valid shape is a set of intervals on the real line.

In this work we report on our experiments implementing the van der Meiden Approach to compute
the set of parameter values that bound intervals for which the parametric object is realizable. The
implementation is developed on top of a constructive, ruler-and-compass geometric constraint solver.
We formalize the underlying concepts and prove that our implementation is correct, that is, the approach

exactly computes all the feasible interval bounds.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Many applications in computer-aided design, computer-aided
manufacturing, kinematics, robotics or dynamic geometry are con-
veniently modeled by geometric problems defined by geometric
constraints with parameters, some of them representing dimen-
sions. These generic models allow the user to easily generate spe-
cific instances for various parameter and constraint values.

When parametric models are used in real applications, it is
often found that instantiation may fail for some parameter values.
Assuming that failures are not due to bugs in the system, they
should be attributed to a more basic problem, that is, a certain
combination of constraints in the model and values of parameters
do not define a valid shape. We consider parametric models of
geometric objects in the Euclidean plane with one degree of
freedom corresponding to a variant parameter, after discounting
rotations and translations of the entire object.

In general, the set of values of the variant parameter for which
the parametric model is realizable and defines a valid shape is a set
of intervals on the real line. The goal of this work is to implement
the van der Meiden et al. approach [1,2], to figure out the set

* Corresponding author. Tel.: +34 93 401 66 69; fax: +34 93 401 60 50.
E-mail addresses: mhidalgo@Isi.upc.edu (M. Hidalgo), robert@Isi.upc.edu
(R. Joan-Arinyo).

0010-4485/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2012.02.012

of values of the variant parameter that bound these intervals.
The approach is built on top of a constructive ruler-and-compass
solver. We prove that the algorithm is correct in the sense that it
yields all and only bounds of the interval feasible values.

Computing the set of parameter values for which a parametric
object is realizable is a long standing problem. However, the
literature published concerning this problem is scarce. Shapiro
and Vossler, [3], and Raghothama and Shapiro, [4-6], developed
a theory on validity of parametric family of solids by investigating
the relationship between Brep and CSG schemas in systems with
dual representations for solid modeling. The formulation is built on
formalisms of algebraic topology. Unfortunately, it seems a rather
difficult problem transforming these formalisms into effective
algorithms.

Joan-Arinyo and Mata [7] reported on a method to compute
feasible ranges for parameters in geometric constraint solving
under the assumption that values assigned to parameters are non-
trivial-width intervals. The method applies to complex systems of
geometric constraints in both 2D and 3D and has been successfully
applied in the dynamic geometry field, [8]. It is a general method,
the main drawback, however, is that it is based on numerical
sampling.

Hoffmann and Kim [9] developed a constructive approach to
calculate parameter ranges for systems of geometric constraints
that include sets of isothetic line segments and distance constraints
between them. Model instantiation for distance parameters within

http://dx.doi.org/10.1016/j.cad.2012.02.012
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:mhidalgo@lsi.upc.edu
mailto:robert@lsi.upc.edu
http://dx.doi.org/10.1016/j.cad.2012.02.012

710 M. Hidalgo, R. Joan-Arinyo / Computer-Aided Design 44 (2012) 709-720

the ranges output by the method preserve the topology of the set
of isothetic lines.

In anilluminating work, van der Meiden [1], and van der Meiden
and Bronsvoort, [2], reported on a constructive method to calculate
parameter ranges for systems of geometric constraints. Constraint
systems are restricted to systems of distance and angle constraints
on points and straight lines in 2D or 3D spaces that are well
constrained and decomposable respectively into triangular and
tetrahedral subproblems. The method automatically determines
the allowable range for a single parameter of the system, called
variant parameter, that an actual solution exists for any value in the
range. The method consists of two steps. First a set of values for the
variant parameter, called critical points, [10], for which some well
defined subproblem feasibility changes is computed. Once sorted,
critical points define a sequence of intervals and their feasibility
is established by checking feasibility at some point within each
interval.

Gao and Sitharam, in [11,12], described a general result
concerning the computation of critical points for 2D problems with
one degree of freedom which include just points and distance
constraints that can be abstracted as one degree of freedom
Henneberg graphs. Here we consider problems including distance
and angle constraints that can be abstracted as tree decomposable
graphs, a superset of Henneberg graphs.

The van der Meiden et al. method is the subject of our study.
In Section 2 we recall basic concepts on constructive geometric
constraint solving. Section 3 formalizes the geometric constraint
problem with one variant parameter. The van der Meiden method
and our implementation are described in Sections 4 and 5
respectively. Section 6 is devoted to prove that the method is
correct. Section 7 describes a case study to illustrate how the
approach works. Finally, in Section 8 we offer a short discussion.

2. Preliminaries

First we recall some basic concepts related to geometric
constraint solving in general. Then we focus on the constructive
technique. For an in depth discussion on this topic see, for
example, [13-23].

2.1. Geometric constraint problems

In this paper we focus on the basic constraint problem defined
as follows. Given a set of geometric elements G and a set of
constraints between them C, place each geometric element in such
a way that the constraints are fulfilled. We consider 2D geometric
constraint problems defined by a set of geometric elements like
points, lines, line segments, circles and circular arcs with fixed
radius, along with a set of constraints like distance, angle, incidence
and tangency between any two geometric elements.

Fig. 1(a) shows an example of geometric constraint problem
consisting of six points {a, b, c, d, e, f}, nine point-point distance
constraints {d;, 1 < i < 9}. Fig. 1(b) shows the geometric
constraint problem abstracted as a graph where one node
represents one geometric element and one labeled edge represents
a geometric constraint defined on the two geometric elements
the edge connects. In what follows we will represent geometric
constraint problems as graphs.

In what follows a geometric constraint problem will be denoted
by a tuple IT = (G, C, P) where G is the set of geometric objects, C
the set of constraints defined on G and P is the set of parameters of
constraints in C.

The constraint solving community is mainly interested in
objects which are invariant under rigid transformations of
translation and rotation. This property is known as rigidity. The
intuitive concept of rigidity, the one that will be used here, is

a

Fig. 1. Geometric constraint problem example. (a) Geometric sketch. (b) Geometric
constraint problem abstracted as a graph.

defined from the number of solutions of the considered problem.
In this context, geometric constraint problems are categorized in
three different families:

1. Well constrained problems are geometric constraint problems
with a non-empty and finite set of solutions.

2. Over-constrained problems are those problems with no actual
solution. Generally, the elimination of one or more constraints
results in a well constraint problem.

3. Under-constrained problems are geometric constraint prob-
lems for which an infinite set of solutions exists. In these cases,
not enough constraints are given.

In this work we only consider well constrained problems.

2.2. Constructive geometric constraint problem solving

Geometric constraint solving is arguably a core technology of
computer aided design and, by extension, geometric constraint
solving is also applicable in virtual reality and is closely related
in a technical sense to geometric theorem proving. For solution
techniques, geometric constraint solving also borrows heavily
from symbolic algebraic computation and matroid theory.

Many techniques have been reported in the literature that
provide powerful and efficient methods for solving systems of
geometric constraints. For a review, see [24]. Among all the
geometric constraint solving techniques, our interest here focuses
on the one known as constructive.

Constructive geometric constraint solving is a technique widely
used in the geometric constraint solving field. We briefly recall
here the main features underlying this technique. An architecture
for constructive solvers is illustrated in Fig. 2 where square
boxes are functional units and rounded boxes are data entities.
The functional units are the analyzer, the index selector and
the constructor. The data entities are the geometric constraint
problem, the construction plan, the parameters assignment and
the index assignment.

In this technology, the user defines a geometric constraint
problem by sketching some geometric elements taken from a given
repertoire (points, lines, circles, etc.) and annotates the sketch with
a set of geometric relationships, called constraints, (point-point
distance, point-line distance, angle between two lines and so on),
that must be fulfilled.

Given the geometric constraint problem, IT = (G, C, P), the
analyzer is responsible for figuring out whether the solver is
able to solve the problem. If the answer is positive, the analyzer
outputs the solution as a sequence of construction steps, known
as construction plan, that will place the geometric elements in
positions for which the constraints hold.

Fig. 3 shows a construction plan for the constraint problem
given in Fig. 1. The meaning of each construction step is the
usual. For example, origin() stands for the origin of an arbitrary

Download English Version:

https://daneshyari.com/en/article/440263

Download Persian Version:

https://daneshyari.com/article/440263

Daneshyari.com

https://daneshyari.com/en/article/440263
https://daneshyari.com/article/440263
https://daneshyari.com

