
Computer-Aided Design 41 (2009) 971–980

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Optimized GPU evaluation of arbitrary degree NURBS curves and surfaces
Adarsh Krishnamurthy ∗, Rahul Khardekar, Sara McMains
Computer Aided Design and Manufacturing Lab, University of California, Berkeley, United States

a r t i c l e i n f o

Article history:
Received 16 July 2008
Accepted 13 June 2009

Keywords:
NURBS
GPU
Surface evaluation
Level of detail

a b s t r a c t

This paper presents a new unified and optimized method for evaluating and displaying trimmed NURBS
surfaces using the Graphics Processing Unit (GPU). Trimmed NURBS surfaces, the de facto standard in
commercial mechanical CAD modeling packages, are currently being tessellated into triangles before
being sent to the graphics card for display since there is no native hardware support for NURBS. Other
GPU-based NURBS evaluation and display methods either approximated the NURBS patches with lower
degree patches or relied on specific hard-coded programs for evaluating NURBS surfaces of different
degrees. Our method uses a unified GPU fragment program to evaluate the surface point coordinates of
any arbitrary degree NURBS patch directly, from the control points and knot vectors stored as textures
in graphics memory. This evaluated surface is trimmed during display using a dynamically generated
trim-texture calculated via alpha blending. The display also incorporates dynamic Level of Detail (LOD)
for real-time interaction at different resolutions of the NURBS surfaces. Different data representations
and access patterns are compared for efficiency and the optimized evaluation method is chosen. Our GPU
evaluation and rendering speeds are more than 40 times faster than evaluation using the CPU.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Non-Uniform Rational B-Splines (NURBS) are the industry stan-
dard for the representation of geometry in mechanical Computer
Aided Design (CAD) systems. Although NURBS are ubiquitous in
the CAD industry, there is currently no built-in hardware support
for displaying NURBS surfaces. OpenGL provides a software NURBS
solution; however, the implementation is not fast enough for eval-
uating large surfaces interactively, and in our experience it of-
ten renders trimmed NURBS surfaces incorrectly. Because surface
evaluation is a computationally intensive operation, the common
practice in CAD systems is to preprocess the NURBS surfaces by
evaluating and tessellating them into triangles, and then using the
standard graphics pipeline to display them.
The use of a preprocessing technique not only leads to very

high memory usage, but also restricts the surface evaluation to
a particular Level of Detail (LOD). Hence, a highly enlarged view
of the surface may not be tessellated sufficiently, whereas a
distant view may render an excessive number of triangles. In this
paper, we describe a method by which we evaluate and display
a trimmed NURBS surface directly, without approximating it by
simpler surfaces, using a programmable graphics card. The usage
of the GPU’s computational power not only speeds up the surface

∗ Corresponding author. Tel.: +1 510 590 7325.
E-mail addresses: adarsh@me.berkeley.edu (A. Krishnamurthy),

rahul@me.berkeley.edu (R. Khardekar), mcmains@me.berkeley.edu (S. McMains).

evaluation significantly but also reduces the CPU memory usage,
eliminating the need for calculating and storing the tessellation
data or simplified surface information that is typically used only
for visualization purposes.
Previous GPU methods [1,2] focused mainly on rendering

NURBS surfaces rather than exact evaluation. Hence, they approx-
imated a higher degree NURBS surface by lower degree Bezier
surfaces that closely resemble the original surface based on pixel
location error while rendering. Even though such approxima-
tions are good enough for rendering, they cannot be extended
to a general-purpose NURBS evaluator capable of handling arbi-
trary degree NURBS surfaces. We introduced a unified method
to evaluate arbitrary degree NURBS surfaces on the GPU with-
out making any approximations [3]. The contemporaneous work
by Kanai [4] for evaluating NURBS surfaces also did not use any
approximations, but required different GPU programs for evalu-
ating NURBS surfaces of different degrees. This makes the imple-
mentation of their system tedious, since specific new programs
have to bewritten for surfaces of different degrees.Moreover, since
standard CAD models can be made of surfaces of widely varying
degrees, with surfaces up to degree 100 occurring in many com-
plex models, a unified NURBS evaluation algorithm will be a more
practical solution.
In this paper we describe our unified NURBS evaluation

and rendering method, expanded from the original conference
presentation [3]. The main contributions of our approach include:

• A GPU method for evaluating arbitrary degree NURBS surfaces
with an arbitrary number of control points and knots with

0010-4485/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2009.06.015

http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:adarsh@me.berkeley.edu
mailto:rahul@me.berkeley.edu
mailto:mcmains@me.berkeley.edu
http://dx.doi.org/10.1016/j.cad.2009.06.015


972 A. Krishnamurthy et al. / Computer-Aided Design 41 (2009) 971–980

the same unified fragment program. Our method uses the
GPU to evaluate a grid of points on the NURBS surface that
can be directly used for rendering as well as for further
modeling operations. Our method is easily extensible to
evaluate derivatives and normals of the NURBS surface.
• Backward-compatible algorithms that make use of standard
OpenGL extensions or features that are available even in cards
that are more than 5 years old, while still taking advantage of
the improved performance on newer cards.
• Different implementations of the evaluation algorithm that use
different memory access patterns and data packing on the
GPU. We choose the optimum evaluation method based on the
performance of these different implementations.
• A direct method to render trimmed NURBS surfaces by inter-
preting the points already evaluated as vertices. The rendering
algorithm is capable of dynamic continuous LOD based on the
size and location of the surface with respect to the view point.

2. Background and related work

2.1. Programmable GPUs

Graphics processing units (GPUs) have recently evolved into
programmable parallel processors capable of performing general-
purpose computational tasks [5,6]. We make use of two pro-
grammable units on the GPU, the Vertex Processing Unit (VPU)
and the Fragment Processing Unit (FPU), which can execute a user-
defined set of instructions, called the vertex program and the frag-
ment program, for each vertex and fragment respectively, in the
place of a fixed sequence of geometric transformations, lighting
operations (per-vertex operations), and texturing operations (per-
fragment operations). Vertex programs can obtain the geometry
and attribute (color, texture coordinates, etc.) data stored in the
GPU memory via traditional display lists or more recently, Ver-
tex Buffer Objects (VBOs). Geometric primitives (triangles gen-
erally) assembled from the vertex data then get rasterized into
fragments (potential pixels) that pass through the FPU. Vertex and
fragment programs can access data stored in textures that can have
full 32-bit floating point precision. Usually the output of the FPU
goes into a frame buffer, which is a 2D block of memory with four
attributes at each location. In modern GPUs, the FPU can also out-
put directly to a floating point texture (render-to-texture) using
off-screen render targets called Frame Buffer Objects (FBOs). This
allows the use of the output of a first pass through the rendering
pipeline as input texture data for the second pass. FBOs can also be
used to render into a Vertex Buffer Object (VBO) so that the out-
put can be used as vertex data for the next rendering pass. Because
multiple vertices and pixels are processed in parallel, and operands
are four-component vectors, GPUs can achieve much higher com-
putational speeds than conventional CPUs on arithmetically inten-
sive operations.

2.2. NURBS evaluation techniques

Many early high-quality renderings of curved surfaces used ray
tracing. Toth [7] and Nishita et al. [8] perform ray tracing on para-
metric and rational surfaces by solving for the ray-surface intersec-
tion point using numerical methods. Martin et al. [9] gives a com-
plete algorithm for ray tracing trimmed NURBS. Pabst et al. [10]
used ray casting on the GPU to render trimmed NURBS surfaces.
To take advantage of graphics hardware, parametric surfaces

tend to be tessellated before display. Much work on trimmed
NURBS focuses on the trimming aspect. The OpenGL version
1.1 implementation renders trimmed NURBS surfaces using
the method presented by Rockwood et al. [11] for trimmed
parametric surfaces, which divides the parametric domain into

patches based on the trim curves. These patches are then
tessellated in the 2D domain and then evaluated to find the
surface point coordinates. However, in our experience the OpenGL
implementation tessellates trimmedNURBS surfaces incorrectly at
trim curve concavities. In addition, being a CPU evaluator, it is not
fast enough to render large numbers of trimmed NURBS surfaces
at interactive rates.
Previous work such as [12–14] displayed NURBS after first con-

verting them to Bezier patches and converting the trimming curves
to Bezier segments, since Bezier evaluation is less computation-
ally demanding. These patches were then triangulated and sent to
the graphics card for display. Guthe et al. [1,2] approximate each
NURBS surface with lower degree Bezier patches, but they then
evaluate the Bezier patches on the GPU after the CPU approxima-
tion step. They also introduced a LOD system for choosing the ap-
propriate approximation patch decomposition and the sampling
density. Since in general no Bezier surface of lower degree can
exactly match an arbitrary degree NURBS surface, a disadvantage
of this approach is that the final surface may not achieve suffi-
cient accuracy unless it is split intomany Bezier patches, increasing
the number of patches by up to two orders of magnitude in their
examples.
Subdivision surfaces, which have largely replaced tensor-

product patches in entertainment applications where mathemati-
cal exactness is not required, have also been directly evaluated on
the GPU. Prior work by Bolz and Schröder [15] and Shiue et al. [16]
focused on using a fragment program to compute the limit points
of Catmull–Clark subdivision meshes. These methods can be ex-
tended to evaluate uniform B-spline surfaces; the limit surface of
a Catmull–Clark subdivision in the absence of extraordinary points
is the bi-cubic B-spline surface. However, they cannot be extended
to evaluate NURBS because they do not have a subdivision scheme
with stationary rules [17,18]. Loop and Blinn [19] used the GPU to
render piecewise algebraic surfaces of lower degrees. However, it is
difficult to extend the method to evaluate arbitrary degree NURBS
surfaces.
The fragment-program implementations of surface evaluation

of subdivisions were not fast enough for real-time interactionwith
a large number of surfaces because the evaluated surface coordi-
nates had to be read back from an off-screen pixel buffer using an
expensive p-buffer switch for each surface. Guthe et al. [1] over-
come this issue by using a vertex program, but their method is not
as flexible because the number of parameters that can be passed
to a vertex program is quite limited, and vertex texture fetches are
possible only in the latest graphic cards. Thus, they approximated
the original input by a hierarchy of bi-cubic Bezier patches to limit
the amount of data that needed to be transferred per patch. In our
approach, we use a fragment program but get around the p-buffer
switch issue by using a frame buffer object, which renders directly
to a texture, and a vertex buffer object, which takes this texture as
input coordinates for a subsequent rendering pass.
Recently, Kanai [4] developed a fragment-program based

NURBS evaluation that closely resembles our method. However,
their implementation required different fragment programs for
surfaces of different degrees. While this method is theoretically
capable of evaluating any NURBS surface, its implementation
becomes tedious since different fragment programs have to be
written specifically for each possible degree of a NURBS surface
thatmay be present in amodel. Hence a unified evaluationmethod
that can be used to evaluate arbitrary degree NURBS surfaces is
preferred.

2.3. NURBS curve and surface definitions

In this section, we briefly review the mathematical notation
used for defining NURBS curves and surfaces, adapted from Piegl



Download English Version:

https://daneshyari.com/en/article/440371

Download Persian Version:

https://daneshyari.com/article/440371

Daneshyari.com

https://daneshyari.com/en/article/440371
https://daneshyari.com/article/440371
https://daneshyari.com

