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a b s t r a c t

This paper deals with the mathematical formulation of tolerance analysis. The mathematical formulation
presented in this paper simulates the influences of geometrical deviations on the geometrical behavior
of the mechanism, and integrates the quantifier notion (existential quantifier: ‘‘there exists’’; universal
quantifier: ‘‘for all’’). It takes into account not only the influence of geometrical deviations but also the
influence of the types of contacts on the geometrical behavior; these physical phenomena are modeled
by convex hulls (compatibility hull, interface hull and functional hull) which are defined in parametric
space. With this description by convex hulls, a mathematical expression of the admissible deviations of
parts integrates the quantifier notion. This notion translates the concept that a functional requirement
must be respected in at least one acceptable configuration of gaps (existential quantifier: ‘‘there exists’’),
or that a functional requirement must be respected in all acceptable configurations of gaps (universal
quantifier: ‘‘for all’’). To compute this mathematical formulation, two approaches based on Quantified
Constraint Satisfaction Problem solvers and Monte Carlo simulation are proposed and tested.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

As technology improves and performance requirements con-
tinually tighten, the cost and the required precision of assemblies
increase as well. There is a strong need for increased attention to
tolerance design in order to enable high-precision assemblies to be
manufactured at lower costs. Therefore, tolerance analysis is a key
element in industry for improving product quality. To do so, a sub-
stantial amount of research has been devoted to the development
of tolerance analysis. It can be eitherworst-case or statistical [1–4].
Worst-case analysis (also called deterministic or high–low tol-

erance analysis) involves establishing the dimensions and toler-
ances such that any possible combination produces a functional
assembly, i.e. the probability of non-assembly is identically equal
to zero. It considers the worst possible combinations of individ-
ual tolerances and examines the functional characteristic. Conse-
quently, worst-case tolerancing can lead to excessively tight part
tolerances and hence high production costs [2,4].
Statistical tolerancing is a more practical and economical way

of looking at tolerances and works on setting the tolerances so
as to ensure a desired yield. By permitting a small fraction of
assemblies to not assemble or function as required, an increase in
tolerances for individual dimensions may be obtained, and in turn,
manufacturing costs may be reduced significantly [3]. Statistical
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tolerance analysis computes the probability that the product can
be assembled and will function under a given individual tolerance.
This state of the art based on academic papers and also on

four commercial systems (CATIA 3D FTA from Dassault Systèmes,
CE/TOL 6 Sigma from Sigmetrix, e-TolMate from Tecnomatix and
CAT_3DCS from DCS) points out a main difference between these
commercial systems, the first two analyze one ‘‘sample’’ of an
assembly and are based on a linear algebraic problem, whereas
the later ones require a large number of ‘‘samples’’ to achieve
reasonable accuracy and are based on statistics [2]. The models
usedwithin the systems are not clearly presented because it is very
difficult to obtain information from CAT system vendors.
The analysis methods are divided into two distinct categories

based on the type of accumulation input: displacement accumula-
tion and tolerance accumulation.
• The aim of displacement accumulation is to simulate the
influences of deviations on the geometrical behavior of the
mechanism. Usually, tolerance analysis uses a relationship of
the form [3]:
Y = f (X1, X2, . . . , Xn) (1)
where Y is the response (characteristics such as gap or func-
tional characteristics) of the assembly and X = {X1, X2, . . . , Xn}
are the values of some characteristics (such as situation devia-
tions or/and intrinsic deviations) of the individual parts or sub-
assemblies making up the assembly. The part deviations could
be represented by kinematic formulation [5], small displace-
ment torsor (SDT) [6], matrix representation [7], vectorial tol-
erancing [8] etc.

0010-4485/$ – see front matter© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2008.11.003

http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:jean-yves.dantan@metz.ensam.fr
http://dx.doi.org/10.1016/j.cad.2008.11.003


2 J.-Y. Dantan, A.-J. Qureshi / Computer-Aided Design 41 (2009) 1–12

The function f is the assembly response function which
represents the deviation accumulation. The relationship can
exist in any form for which it is possible to compute a value
for Y given values of X = {X1, X2, . . . , Xn}. It could be an
explicit analytic expression or an implicit analytic expression.
In a particular relative configuration of parts of an assembly
consisting of gaps without interference between parts, the
composition relations of displacements in some topological
loops of the assembly permit determining the function f .
For hyperstatic assembly, determination of function f is very
complex, whereas this determination is easy for an open
kinematic chain.
For statistical tolerance analysis, the input variables X =

{X1, X2, . . . , Xn} are continuous random variables which enable
representing tolerances. In general, they could be mutually de-
pendent. A variety of methods and techniques (Linear Propaga-
tion (Root Sum of Squares), Nonlinear propagation (Extended
Taylor series), Numerical integration (Quadrature technique),
Monte Carlo Simulation etc.) are available for estimation of the
probability distribution of Y and the probability P(T ) with re-
spect to the geometrical requirement [3].
• The aim of tolerance accumulation is to simulate the compo-
sition of tolerances i.e. linear tolerance accumulation and 3D
tolerance accumulation. Based on the displacement models,
several vector space models map all possible manufacturing
variations (geometrical displacements between manufactur-
ing surfaces or between manufacturing surface and nominal
surface) into a region of hypothetical parametric space. The
geometrical tolerances or the dimensioning tolerances are rep-
resented by deviation domain [9–11], T-Map r© [12,13] or spec-
ification hull [14,15]. These three concepts are a hypothetical
Euclidean volume which represents all possible deviations in
size, orientation and position of features.
For tolerance analysis, this mathematical representation of

tolerances allows calculation of accumulation of the tolerances
byMinkowsky sumof deviation and clearance domains [10,11]:
to calculate the intersection of domains for parallel kinematic
chain and to verify the inclusion of a domain inside other one.
The methods based on this mathematical representation of
tolerances are very efficient for the tolerance analysis.

However, these two approaches do not take into account
the quantifier notion. This notion translates the concept that
a functional requirement must be respected in at least one
acceptable configuration of gaps (existential quantifier: ‘‘there
exists’’), or that a functional requirement must be respected in
all acceptable configurations of gaps (universal quantifier: ‘‘for
all’’) [16,15]. A configuration is a particular relative position of
parts of an assembly consisting of gaps without interference
between parts.
The quantifier notion impacts the result of the tolerance anal-

ysis [16,15]. Therefore, we propose a mathematical formulation
of tolerance analysis which simulates the influences of geomet-
rical deviations on the geometrical behavior of the mechanism,
and integrates the quantifier notion. To compute thismathematical
formulation, two approaches based on Quantified Constraint Satis-
faction Problem solvers and Monte Carlo simulation are proposed
and tested.

2. Quantifier notion and mathematical formulation of toler-
ance synthesis

In this section, the quantifier notion is illustrated with a
geometrical requirement and with an assembly requirement.

2.1. Quantifier notion for geometrical product requirement

A mechanism is a set of parts with joints. Most of the joints
have functional gap. These gaps induce displacements between
parts. Each relative position defines a configuration of the joint.
A configuration is a particular relative position of parts of an
assembly consisting of gaps without interference between parts.
The product geometrical requirement limits the variation between
two surfaces of the mechanism, which are in functional relation.
This requirement is a condition on the functional characteristic
between these surfaces. For any given mechanism with gap [14,
15], the relative orientation or position of these surfaces depends
on the configuration, which is not single. Therefore, the value
of the functional characteristic depends on the configuration
of the mechanism. There is an ambiguity in the expression of
the requirement because the considered configuration is not
described. In order to address this problem, it is necessary to
specify: in which configuration, the condition of the geometrical
requirement must be checked. The expression of the geometrical
product requirement is not univocal [16].
So, to define a univocal expression of the condition correspond-

ing to a geometrical product requirement, this expression is com-
pleted by a quantifier (∃ or∀). The quantifier translates the concept
that the condition must be respected in at least one configuration
of the mechanism (∃), or that the condition must be respected in
all configurations of the mechanism (∀).

• In the case of the quantifier ∃, if there exists one configuration
of the mechanism such that the value of the functional
characteristic is less than or equal to the tolerance, then the
geometrical product requirement is respected.
• In the case of the quantifier ∀, if for all configurations of the
mechanism, the value of the functional characteristic is less
than or equal to the tolerance, then the geometrical product
requirement is respected.

2.2. Mathematical formulation of tolerance analysis for geometrical
product requirement

In the CADenvironment, amodel is represented by ideal dimen-
sions known as nominal dimensions. The nominal dimension is the
representation of the ideal representation of the part model geom-
etry. Due to the variations associated with manufacturing process,
it is not possible to attain this nominal dimension in a repetitive
manner. In reality, any specific dimension might vary within a de-
fined range due to reasons such as setup errors, toolwear andmany
other factors. In order to account for these factors and to ensure the
desired behavior of the assembly in spite of variations, the com-
ponent features are assigned a parametric zone within which the
value of the feature i.e. situation and intrinsic lie.
The approach used in this paper is a parameterization of devi-

ations from theoretic geometry, the real geometry of parts is ap-
prehended by a variation of the nominal geometry. The substitute
surfaces model these real surfaces. This parameterization of vari-
ations is detailed in Section 2.2.1, and it enables us to define a
variations parametric space, in which each coordinate system axis
represents a parametric variable.
The mathematical formulation of tolerance synthesis takes

into account not only the influence of geometrical deviations
on the geometrical behavior of the mechanism and on the
geometrical product requirements, but also the influence of the
types of contacts on the geometrical behavior; all these physical
phenomena are modeled by convex hulls (compatibility hull,
interface hull and functional hull; these convex hulls are detailed in
Section 2.2.2)which are defined in the variations parametric space.
A convex hull or a convex polytope [17,18] may be defined as a finite
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