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Abstract

Defeaturing is a popular CAD/CAE simplification technique that suppresses ‘small or irrelevant features’ within a CAD model to speed-up
downstream processes such as finite element analysis. Unfortunately, defeaturing inevitably leads to analysis errors that are not easily quantifiable

within the current theoretical framework.

In this paper, we provide a rigorous theory for swiftly computing such defeaturing-induced engineering analysis errors. In particular, we
focus on problems where the features being suppressed are cutouts of arbitrary shape and size within the body. The proposed theory exploits the
adjoint formulation of boundary value problems to arrive at strict bounds on defeaturing induced analysis errors. The theory is illustrated through

numerical examples.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Mechanical artifacts typically contain numerous geometric
features. However, not all features are critical during
engineering analysis. Irrelevant features are often suppressed or
‘defeatured’, prior to analysis, leading to increased automation
and computational speed-up.

For example, consider a brake rotor illustrated in Fig. 1(a).
The rotor contains over 50 distinct ‘features’, but not all of these
are relevant during, say, a thermal analysis. A defeatured brake
rotor is illustrated in Fig. 1(b). While the finite element analysis
of the full-featured model in Fig. 1(a) required over 150,000
degrees of freedom, the defeatured model in Fig. 1(b) required
<25,000 DOF, leading to a significant computational speed-up.

Besides an improvement in speed, there is usually an
increased level of automation in that it is easier to automate
finite element mesh generation of a defeatured component [1,2].
Memory requirements also decrease, while condition number of
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Fig. 1. (a) A brake rotor and (b) its defeatured version.

the discretized system improves; the latter plays an important
role in iterative linear system solvers [3].

Defeaturing, however, invariably results in an unknown
‘perturbation’ of the underlying field. The perturbation may be
‘small and localized’ or ‘large and spread-out’, depending on
various factors. For example, in a thermal problem, suppose one
deletes a feature; the perturbation is localized provided: (1) the
net heat flux on the boundary of the feature is zero, and (2) no
new heat sources are created when the feature is suppressed;
see [4] for exceptions to these rules. Physical features that
exhibit this property are called self-equilibrating [5]. Similarly
results exist for structural problems.

From a defeaturing perspective, such self-equilibrating
features are not of concern if the features are far from the region


http://www.elsevier.com/locate/cad
mailto:gopalakrishn@wisc.edu
mailto:suresh@engr.wisc.edu
http://dx.doi.org/10.1016/j.cad.2006.09.006

S.H. Gopalakrishnan, K. Suresh / Computer-Aided Design 39 (2007) 60-68 61

of interest. However, one must be cautious if the features are
close to the regions of interest.

On the other hand, non-self-equilibrating features are of
even higher concern. Their suppression can theoretically be
felt everywhere within the system, and can thus pose a major
challenge during analysis.

Currently, there are no systematic procedures for estimating
the potential impact of defeaturing in either of the above two
cases. One must rely on engineering judgment and experience.

In this paper, we develop a theory to estimate the impact of
defeaturing on engineering analysis in an automated fashion.
In particular, we focus on problems where the features being
suppressed are cutouts of arbitrary shape and size within the
body. Two mathematical concepts, namely adjoint formulation
and monotonicity analysis, are combined into a unifying theory
to address both self-equilibrating and non-self-equilibrating
features. Numerical examples involving 2nd order scalar partial
differential equations are provided to substantiate the theory.

The remainder of the paper is organized as follows. In
Section 2, we summarize prior work on defeaturing. In
Section 3, we address defeaturing induced analysis errors, and
discuss the proposed methodology. Results from numerical
experiments are provided in Section 4. A by-product of the
proposed work on rapid design exploration is discussed in
Section 5. Finally, conclusions and open issues are discussed
in Section 6.

2. Prior work

The defeaturing process can be categorized into three
phases:

(a) Identification: what features should one suppress?

(b) Suppression: how does one suppress the feature in an
automated and geometrically consistent manner?

(c) Analysis: what is the consequence of the suppression?

The first phase has received extensive attention in the literature.
For example, the size and relative location of a feature is often
used as a metric in identification [2,6]. In addition, physically
meaningful ‘mechanical criterion/heuristics’ have also been
proposed for identifying such features [1,7].

To automate the geometric process of defeaturing, the
authors in [8] develop a set of geometric rules, while the
authors in [9] use face clustering strategy and the authors
in [10] use plane splitting techniques. Indeed, automated
geometric defeaturing has matured to a point where commercial
defeaturing/healing packages are now available [11,12]. But
note that these commercial packages provide a purely
geometric solution to the problem ... they must be used with
care since there are no guarantees on the ensuing analysis
errors. In addition, open geometric issues remain and are being
addressed [13].

The focus of this paper is on the third phase, namely, post-
defeaturing analysis, i.e., to develop a systematic methodology
through which defeaturing-induced errors can be computed.
We should mention here the related work on reanalysis. The
objective of reanalysis is to swiftly compute the response of a

Fig. 2. A 2-D heat block assembly.

modified system by using previous simulations. One of the key
developments in reanalysis is the famous Sherman—Morrison
and Woodbury formula [14] that allows the swift computation
of the inverse of a perturbed stiffness matrix; other variations
of this based on Krylov subspace techniques have been
proposed [15-17]. Such reanalysis techniques are particularly
effective when the objective is to analyze two designs that share
similar mesh structure, and stiffness matrices. Unfortunately,
the process of defeaturing can result in a dramatic change in
the mesh structure and stiffness matrices, making reanalysis
techniques less relevant.

A related problem that is not addressed in this paper is that
of local-global analysis [13], where the objective is to solve
the local field around the defeatured region after the global
defeatured problem has been solved. An implicit assumption
in local-global analysis is that the feature being suppressed is
self-equilibrating.

3. Proposed methodology
3.1. Problem statement

We restrict our attention in this paper to engineering
problems involving a scalar field u governed by a generic 2nd
order partial differential equation (PDE):

V.(—=cVu) +au = f.

A large class of engineering problems, such as thermal, fluid
and magneto-static problems, may be reduced to the above
form.

As an illustrative example, consider a thermal problem over
the 2-D heat-block assembly (2 illustrated in Fig. 2.

The assembly receives heat Q from a coil placed beneath
the region identified as (2.,i. A semiconductor device is seated
at f2evice- The two regions belong to {2 and have the same
material properties as the rest of (2. In the ensuing discussion, a
quantity of particular interest will be the weighted temperature
Tyevice Within 2gevice (see Eq. (2) below). A slot, identified as
0 in Fig. 2, will be suppressed, and its effect on Tgeyice
will be studied. The boundary of the slot will be denoted by
I'got while the rest of the boundary will be denoted by I'.
The boundary temperature on I is assumed to be zero. Two
possible boundary conditions on [ are considered: (a) fixed
heat source, i.e., (—kVT).n = q, or (b) fixed temperature, i.e.,
T = Tgot- The two cases will lead to two different results for
defeaturing induced error estimation.
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