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Three-dimensional beta shapes
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Abstract

The Voronoi diagram of a point set has been extensively used in various disciplines ever since it was first proposed. Its application realms have
been even further extended to estimate the shape of point clouds when Edelsbrunner and Mücke introduced the concept of α-shape based on the
Delaunay triangulation of a point set.

In this paper, we present the theory of β-shape for a set of three-dimensional spheres as the generalization of the well-known α-shape for a set
of points. The proposed β-shape fully accounts for the size differences among spheres and therefore it is more appropriate for the efficient and
correct solution for applications in biological systems such as proteins.

Once the Voronoi diagram of spheres is given, the corresponding β-shape can be efficiently constructed and various geometric computations
on the sphere complex can be efficiently and correctly performed. It turns out that many important problems in biological systems such as proteins
can be easily solved via the Voronoi diagram of atoms in proteins and β-shapes transformed from the Voronoi diagram.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The Voronoi diagram and its related concepts have been
quite popular in various disciplines including science and
engineering [1]. In particular, the Voronoi diagram for a point
set has been increasingly used over the past several years for
various applications. This is due to a greater understanding of
its mathematical and computational properties as well as the
development of robust yet efficient codes [1–3].

In biology, for example, the Voronoi diagram of the centers
of atoms in a molecule was first used by Richards in 1974
to study the packing density of molecules [4]. Since then the
Voronoi diagram has been used as one of the most important
computational tools for the structure analysis for molecules.
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Since 1974, the Voronoi diagram of a point set has been
used quite extensively in the solution process of various
structural biology problems. However, it was immediately
noticed by Richards himself that the ordinary Voronoi diagram
of points does not take the size variation among the atoms
into account [4]. Richards, therefore, proposed to translate the
planar bisector between two atoms in the Voronoi diagram
according to the size difference between the two atoms.
However, the translations of bisectors caused the so-called
vertex error since this transformation does not guarantee a
correct tessellation of the space in general [5]. In 1982,
Gellatly and Finney proposed the use of a radical plane as
the bisector between two atoms since the radical planes as
bisectors guarantee no vertex error [5]. While reflecting the size
variations among atoms at a certain level, this transformation
guarantees a valid tessellation of the space. The tessellation
using radical planes is indeed identical to the power diagram
named by Aurenhammer [6].

By introducing the noble concept of α-shapes in 1994,
Edelsbrunner and Mücke provided a basis for the applications
of the Voronoi diagram of a point set in reconstructing the
shape from which the point set is produced [7]. They also
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provided an efficient code to compute α-shapes using properties
of Delaunay triangulation. Since α-shapes are fundamentally
based on the rigorous theory of the Voronoi diagram of a
point set and the Delaunay triangulation, they have been used
in various applications. The main applications of α-shapes lie
in the field of reasoning the surface shape which a point set
defines. Based on this property, many researchers have tried
to use α-shapes for restructuring and reasoning the spatial
structure of biological systems [8–11].

However, α-shapes have limitations in their applications in
biological systems mainly due to the fact that α-shapes do not
account for the size variation among atoms at all. In general,
the proximity among spheres is not necessarily identical to the
proximity among the centers of the spheres [12,13].

In order to incorporate the size difference among atoms,
Edelsbrunner generalized the α-shape to the weighted α-shape
using the regular triangulation which is the topological dual
of the power diagram of the atoms [14,15]. Since then the
weighted α-shapes have been used in the restructuring and
reasoning of spatial structure for molecular systems [8–11].
However, weighted α-shapes themselves also have limitations
in biological applications based on the Euclidean distance
metric even though they reflect the size variations of atoms at a
certain level.

In this paper, we present the theory of β-shape which reflects
the size difference among spheres in their full Euclidean metric.
Being the generalization of the α-shape in the Euclidean metric,
the β-shape provides a complete consideration of the size
differences among spheres. As will be elaborated in this paper,
the proposed β-shape facilitates more convenient and powerful
algorithms than the α-shape and the weighted α-shape for
the applications based on the Euclidean distance. After the β-
shape is defined, various properties of β-shapes including their
similarities and dissimilarities with α-shapes are discussed.
Then, the algorithm to compute β-shapes is presented based
on the Voronoi diagram of spheres in the Euclidean distance
metric. The proposed construct is called a β-shape since it is
based on the concept of βlending over spheres. In addition, the
name, β-shape, also implies that it is the generalization of the
α-shape.

In Section 2, we provide a brief review of the well-
known concepts of α-hull, α-shape and weighted α-shape. In
Section 3, we present the need for another structure, β-shape,
by illustrating the limitations of α-shape and weighted α-shape
with a few examples. In Section 4, we present a motivation for
the study of geometric problems in biological systems since
we believe the CAD and CAGD community can find new
opportunity in biology. In Sections 5 and 6, we introduce the
concept of β-hull and β-shape and discuss a few properties of
these new constructs. In Section 7, we present algorithms to
construct β-shapes from the Voronoi diagram of spheres.

2. Reviews of α-family

In this section, we briefly review the three-dimensional α-
shape and its weighted counterpart. Let S be a finite set of points
in R3 and α satisfy 0 ≤ α ≤ ∞. The following paragraph,

Fig. 1. Illustration of α-hulls and α-shapes for an identical point set in the
plane. (a) An α-hull for α1, (b) the corresponding α-shape for α1, (c) an α-hull
for α2 where α1 < α2, and (d) the α-shape corresponding to α2.

quoted from Edelsbrunner and Mücke [7], explains α-hulls and
α-shapes very intuitively yet clearly.

“Think of R3 filled with Styrofoam and the points of S
made of more solid material, such as rock. Now imagine a
spherical eraser with radius α. It is omnipresent in the sense
that it carves out Styrofoam at all positions where it does not
enclose any of the sprinkled rocks, that is, points of S. The
resulting object will be called the α-hull. To make things
more feasible we straighten the surface of the object by
substituting straight edges for the circular ones and triangles
for the spherical caps. The obtained object is the α-shape
of S.”

Therefore, an α-shape is identical to the convex hull of S
when α = ∞. For α = 0, the α-shape reduces to the point set
S itself. In general, α-shapes can be concave and disconnected.
α-shapes can contain two-dimensional patches of triangles and
one-dimensional strings of edges. Its components can be even
points. An α-shape is a subset of the closure of the Delaunay
triangulation of S, and it may have handles and interior voids.

Let ∂ X , i(X), and cl(X) denote the boundary, the interior,
and the closure of a set X , respectively. In addition, let Hα(S)

and Sα(S) denote an α-hull and an α-shape of the set S. Then, it
can be shown that in general ∂i(Sα(S)) 6= ∂Sα(S). This implies
that α-shapes are non-manifold in general.

Fig. 1(a) shows a point set in the plane and an α-hull defined
on the point set for a particular value of α1. The corresponding
α-shape for α1 is shown in Fig. 1(b) with a dangling edge.
Similarly, Fig. 1(c) and (d) illustrates the α-hull and α-shape of
the same input points for α2, respectively, where 0 < α1 < α2.
As shown in the figure, the α-hull for α1 is a subset of the
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