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Abstract

This paper introduces a new method of generating 2D flat patterns from a 3D triangulated surface by opening the bending configuration of
each winged triangle pair. The flattening can be divided into four steps. First, a 3D triangulated surface is modeled with a mass—spring system
that simulates the surface deformation during the flattening. Second, an unwrapping force field is built to drive the mass—spring system to a
developable configuration through the numerical integration. Third, a velocity redistribution procedure is initiated to average velocity variances
among the particles. Finally, the mass—spring system is forced to collide with a plane, and the final 2D pattern is generated after all the winged
triangle pairs are spread onto the colliding plane. To retain the size and area of the original 3D surface, a strain control mechanism is introduced
to keep the springs from over-elongation or over-shrinkage at each time step.
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1. Introduction

3D surface flattening is a subject widely studied in the field
of CAD and computational geometry. Flat patterns generated
from original 3D configurations can be used for reverse
engineering to approximate the 3D objects, and are also critical
for creating a texture atlas. In fashion design and apparel
manufacture, a garment is constructed through seaming 2D
flat patterns. When the garment is dressed onto a human
body, each piece of the pattern demonstrates a 3D shape that
is topologically equivalent to a disk. Surface flattening deals
with a reverse issue, i.e., to generate 2D patterns from the
3D garment and to ensure that each pattern has an accurate
boundary that promises the expected 3D shape once it is sewn
with another piece. The methods presented in this paper are
intended for this matter.

If the original 3D object is represented by a triangulated
surface, the boundary is a closed contour and consists of
directional triangle edges. During the flattening, the distortion
of edges contributes to the shaping of the boundary. Thus,
a successful flattening method should be able to handle the
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distortion either individually or collectively, and usually the
insertion of a seam/dart is inevitable.

The method presented in this paper is aimed at unfolding
winged triangles that share the same edge by an unwrapping
force field. Once most winged triangle pairs have been
unfolded, the surface will be forced to collide with a given
plane to generate the final flattened configuration. To retain
the boundary fidelity and to minimize the distortion during
unfolding, a strain control mechanism has been emphasized on
each triangle edge. The whole procedure is a purely physical
approach compared to the current published methods. Different
from other physically based methods for surface flattening,
our method does not need a one-to-one mapping procedure to
obtain the initial flat pattern. The surface patch is considered
as a shell material that is flattened by the internal and external
forces.

2. Previous work

The methods based on surface parameterization for
flattening a 3D surface involve decomposing the surface to
discrete patches, building the correspondence between 3D
meshes and their isomorphic counterparts in a 2D plane through
piecewise mapping, and minimizing the introduced distortions
via a linear and non-linear solver. An excellent overview of the
recent advances in parameterization was given in [1]. The major
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concerns and differences of these methods concentrate on how
to measure and minimize the distortion in parameterization.
In the early paper of Eck et al. [2], the parameterization was
performed according to the harmonic maps which require a
definition of the mesh boundary for the best conformality.
In the work of Levy et al. [3], the parameterization was
achieved by satisfying the Cauchy—Riemann equation in each
triangle, and no boundary definition was needed. Haker et al. [4]
employed the rules of differential geometry for conformal
mappings, and the boundary condition was also needed in their
algorithm. Desbrun et al. [5] proposed a method to maintain
both the conformality and authalicity during parameterization
to minimize the distortion of different intrinsic measures of
the original mesh. Floater [6] presented a method for making
shape-preserving parameterizations of surface triangulations
based on graph theory. Recently, Yoshizawa et al. [7] improved
this method by optimizing the parameterization generated at the
previous step to reach a low-stretch result. This is actually a
redistribution of local stretches.

For the parameterization of a garment surface, the profile
of the flattened pattern and the minimization of strain energy
are of most concern. McCartney et al. [8] presented a
method for flattening the candidate triangle sets iteratively
while evaluating the local distortion energy of particle
movements. Based on the same methodology, Wang et al. [9]
refined this method by transferring the whole surface into
a mass—spring system and applying a penalty function to
recover the overlapped area. The deformation produced in the
flattening procedure was dissipated through energy release and
surface cutting. Recently, McCartney et al. [10] proposed an
orthotropic strain model to mimic the flattening problem of
orthotropic materials. The strain energy is minimized through
a numerical gradient optimization technique based on the
Broyden—Fletcher—Goldfarb—Shanno method. Wang et al. [11]
proposed another method involving inserting the seeds in the
discrete geodesic curve generation algorithm for 3D surface
fitting, and then establishing the planar coordinate mapping
between the 3D surface and its counterpart in the plane
by geodesic interpolation of the mappings. Strain energy
minimization was emphasized in both seed insertion and the
mapping procedure.

A common feature of these methods is that they need
to establish the 2D isomorphic planar configuration through
a one-to-one geometrical mapping and then minimize the
introduced distortion energy through various approaches. The
mapping usually requires a specially designed data structure
and rules to determine the best 2D coordinates. Different from
this manner of flattening, our method is to transfer the 3D
surface into an elastic shell which is actually represented by a
mass—spring system, and to release the embedded bending via
an unwrapping force field.

Mass—spring systems have been widely used in cloth
simulation. In such a system, a sheet of fabric is discretized
into mass particles networked by springs, and the deformation
of the fabric is visualized through the movement of each particle
governed by spring forces. If the mass of the particles and the
stiffness and viscosity of the springs are selected properly, this
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Fig. 1. An unfolding element with dihedral angle = — 6.

model may realistically demonstrate cloth-like deformations
for different types of fabrics with specific fiber contents and
structures. Cloth simulation using mass—spring systems has
been investigated for over two decades. More detailed reviews
on this topic can be found in [16] and [17]. Other successful
fabric modeling methods can be found in [12,15,18-24].

An unconstrained mass—spring system is likely to produce
“super-elastic” effects. Since most of the applications do not
allow excessive distortions, the strain (elongation/compression
rate) of the meshes should not exceed a given tolerance. Though
some researchers thought that any edge of a triangular mesh
should not change by more than 10% in a single time step [25],
we set this tolerance to be 0.5%. The unwanted strain occurring
in a spring can be offset by adjusting either the position [12]
or the velocity [15] of the two end points of the spring. Both
methods can effectively restrain the strain within the limit.
A major difference is that the position adjustment has the
possibility of introducing extra intersections between cloth
meshes and the subject surface, or self-intersections among
cloth meshes.

3. Flattening
3.1. Unwrapping (stage I)

The first step of our method is to open every two winged
triangles in the original surface by applying an unwrapping
force. It is defined as a combination of unfolding and spreading,
which is illuminated in the work of Baraff and Witkin [22] and
the work of Bridson et al. [14] in calculating the bending force.

As shown in Fig. 1, an unfolding element is a winged pair
of triangles that consist of four particles. We use x, v and F
to denote the positions, velocities and unfolding forces of the
particles. ny and ny are the normal of two winged triangle pairs,
and e is the normalized vector from particle 3 to particle 4. If
the original dihedral angle of the winged triangle pairs is 7 — 6,
the resulting dihedral angle is set as & to reflect the flattened
position.

During the unwrapping movement, the velocities v; (i =
1,2, 3,4) and the unfolding forces F; (i = 1,2,3,4) of the
particles exist in a 12-dimensional linear space [14]. There
are 12 distinct “modes” of motion for an unfolding element.
The first 11 modes, which include three rigid (instantaneous)
body translations, three rigid body rotations, two in-plane
motions of vertex 1, two in-plane motions of vertex 2, and
one in-line stretching of edge 3—4, do not affect the dihedral
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