
Computer-Aided Design 38 (2006) 1134–1144
www.elsevier.com/locate/cad

Robust uniform triangulation algorithm for computer aided design

Hovhannes Sadoyana, Armen Zakarianb,∗, Vahram Avagyanb, Pravansu Mohantyc

a Autodesk Inc., Novi, MI 48375, United States
b Department of Industrial and Manufacturing Systems Engineering, University of Michigan – Dearborn, Dearborn, MI 48128, United States

c Department of Mechanical Engineering, University of Michigan – Dearborn, Dearborn, MI 48128, United States

Received 16 June 2005; accepted 29 June 2006

Abstract

This paper presents a new robust uniform triangulation algorithm that can be used in CAD/CAM systems to generate and visualize geometry
of 3D models. Typically, in CAD/CAM systems 3D geometry consists of 3D surfaces presented by the parametric equations (e.g. surface of
revolution, NURBS surfaces) which are defined on a two dimensional domain. Conventional triangulation algorithms (e.g. ear clipping, Voronoi-
Delaunay triangulation) do not provide desired quality and high level of accuracy (challenging tasks) for 3D geometry. The approach developed
in this paper combines lattice tessellation and conventional triangulation techniques and allows CAD/CAM systems to obtain the required surface
quality and accuracy. The algorithm uses a Cartesian lattice to divide the parametric domain into adjacent rectangular cells. These cells are used
to generate polygons that are further triangulated to obtain accurate surface representation. The algorithm allows users to control the triangle
distribution intensity by adjusting the lattice density. Once triangulated, the 3D model can be used not only for rendering but also in various
manufacturing and design applications. The approach presented in this paper can be used to triangulate any parametric surface given in S(u, v)

form, e.g. NURBS surfaces, surfaces of revolution, and produces good quality triangulation which can be used in CAD/CAM and computer
graphics applications.
c© 2006 Elsevier Ltd. All rights reserved.

Keywords: Triangulation; CAD/CAM; Trimming; 3D geometry; Tessellation

1. Introduction

This paper introduces a robust generalized triangulation
technique for the uniform triangulation of the domain that can
be used in CAD/CAM systems for 3D geometry visualization.
In most CAD/CAM systems 3D geometry is presented by the
parametric equations that use additional trimming curves to
define 3D surface domains. Modern 3D visualization hardware
(e.g., ATI and NVIDIA graphics cards with OpenGL and
DirectX support) are not capable of visualizing arbitrary
trimmed parametric surfaces and coping with the miscellaneous
trimming curves, curve intersections, overlappings and other
exceptional issues. In CAD/CAM systems, to visualize a 3D
geometry presented by the parametric surfaces, triangulation
algorithms are used to convert the trimmed parametric surface

∗ Corresponding address: University of Michigan Deraborn, Department of
Industrial and Manufacturing Systems Engineering, 4901 Evergreen Rd, 48128
Dearborn, MI, United States. Tel.: +1 313 593 5244; fax: +1 313 593 3692.

E-mail address: zakarian@umich.edu (A. Zakarian).

to a set of triangles that represent given surfaces. Triangles
of the triangulated surfaces are further transferred by the 3D
design software to the graphics hardware for visualization on a
computer display.

The main problem in any parametric visualization process
is the generation of triangles that represent a given trimmed
parametric surface in a smooth and accurate manner. The
secondary problem is the performance of the triangulation
algorithm. Surface triangulation should be fast enough to be
used in real-time complex 3D surface modelling applications.
Complex 3D models may consist of thousands of trimmed
surfaces and for these models triangulation should be applied
once, during the loading process, rather than for each frame of
rendering (e.g. 30 times/s).

Literature describes various polygon triangulation algo-
rithms with their own advantages and disadvantages. Some of
the algorithms can be used to triangulate simple polygons [1–
6], while several others are used to triangulate polygons with
holes [7–9]. Also, there are several fast view dependent algo-
rithms that achieve speed by storing and reusing the information

0010-4485/$ - see front matter c© 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2006.06.008

http://www.elsevier.com/locate/cad
mailto:zakarian@umich.edu
http://dx.doi.org/10.1016/j.cad.2006.06.008


H. Sadoyan et al. / Computer-Aided Design 38 (2006) 1134–1144 1135

from frame to frame [3,7,10,11] and algorithms that first tes-
sellate the trimming domain before they triangulate and map
it on the surface [6,9,12–15]. The algorithm presented in this
paper follows the latter approach. It uses a Cartesian lattice to
divide the parametric domain into adjacent rectangular cells.
These cells are used to generate polygons that are further
triangulated to obtain accurate surface representation. The al-
gorithm allows users to control the triangle distribution inten-
sity for various surfaces of a 3D model by adjusting the lattice
density or level of detail (LOD). Once triangulated, the 3D
model can be used not only for rendering but also in various
manufacturing and design applications. The approach presented
in this paper can be used to triangulate any parametric surface
given in S(u, v) form, e.g., NURBS surfaces, surfaces of rev-
olution, and produces good quality triangulation which can be
used in CAD/CAM and computer graphics applications.

2. Related work

Kumar and Manocha [7,12] present a view dependent
algorithm for interactive display of trimmed NURBS surfaces.
The algorithm converts the NURBS surfaces/curves into Bezier
surfaces/curves and optimizes the triangulation process. It uses
tight bounds to tessellate Bezier surfaces uniformly into cells,
partition the cells into trimmed and untrimmed regions, and
triangulate the trimming regions. Each cell is triangulated
by tracing the trimming curves and computing the trimming
regions of each cell. The algorithm uses back face culling to
optimize the number of triangles generated, and uses coherence
between successive frames to perform incremental computation
at each frame. Similar to the approach presented in [7],
the triangulation algorithm developed in this paper partitions
the domain into adjacent rectangular (i.e. uniform) cells and
triangulates each cell individually. In contrast to the algorithm
developed in [7], the approach developed in this paper is not
view dependent and can be applied to any parametric surface
represented in S(u, v) form, including NURBS surfaces and
surfaces of revolution. Furthermore, triangles generated by our
triangulation algorithm are located in a single cell, while the
triangles generated by Kumar and Manocha [7] approach may
intersect (overlap) with multiple cells.

Kumar [13] presents another view dependent triangulation
algorithm based on Bezier surfaces and trapezoidation. The
algorithm eliminates or replaces long and thin triangles with
well distributed ones. The triangulation process is optimized by
using information from one frame to the next, which requires
real-time calculations for each frame rendering.

Bern and Eppstein [1] and Bern et al. [8] present polynomial-
time triangulation algorithms that allows one to triangulate
n-sided polygons with O(n2) non-obtuse triangles (i.e. trian-
gles with small angles) and an algorithm that triangulates poly-
gons with holes. Although the algorithms generate triangles
with small angles, the disadvantage of this approach is that it
cannot be used to triangulate trimming surfaces and cannot gen-
erate uniformly distributed triangles for surfaces. However, the
method can be used in the proposed approach as an auxiliary

triangulation procedure for generating polygons that do not af-
fect uniform triangle distribution. To triangulate a polygon, the
algorithm developed in [8] first populates the domain with non-
overlapping circles, then divides the domain into small poly-
gons by adding edges between the centres of the circles and
points of tangency on their boundaries. It triangulates small
polygons using Steiner points. Eppstein [16] introduces an im-
proved technique for the circle population that increases the ef-
ficiency of the algorithm described in [8].

Cho [3] presents an unstructured triangulation algorithm
that approximates a set of mutually non-intersecting simple
trimmed NURBS surface within a user specified geometric
tolerance. The algorithm is based on an unstructured Delaunay
mesh approach that leads to an efficient adaptive triangulation.
It constructs a 2D triangulation domain, which sufficiently
preserves the shape of triangles when mapped into a
3D space.

Rockwood [11] presents a modular approach to render
trimmed NURBS surfaces in real time by a uniform view-
dependent tessellation per patch. Discretization anomalies are
minimized regardless of the view motion to obtain high quality
3D geometry. This concept is used in [9] to triangulate
trimmed surfaces. The approach converts all surfaces into
Bezier patches bounded by the trimming curves that require
additional calculations in the triangulation workflow.

Piegl [6] presents an algorithm for the piecewise triangular
approximation of a trimmed NURBS surface. The approach
presented in [6] is similar to the one developed in this
paper. The algorithm generates deviation-based subdividing
rectangles and triangulates them without requiring NURBS
surfaces to be differentiable. The difference between this
approach and the one presented in this paper is that
Piegl [6] generates rectangular regions of the domain based
on the derivation properties of the NURBS surface while
the approach presented in this paper creates an adjacent
rectangular (uniform) lattice based on the curvature of the
parametric surface (NURBS, Bezier, or surface of revolution).
Furthermore, Piegl [6] uses a NURBS surface approximation
(4-point cubic) to expedite the NURBS computation, while
our approach emphasizes efficient domain triangulation and
maintains the original surface without distorting it. The latter
is important since in many applications surface distortion may
cause undesired artifacts.

Abi-Ezzi [9] presents a technique that uses a graphical
compilation to enable fast dynamic tessellation of trimmed
NURBS surfaces under highly varying transforms. The
approach uses a concept of graphical data compilation to absorb
the main complexities encountered in trimming and processes
NURBS surfaces into compact, view-independent forms for
fast per-frame triangle extraction. Complex trimming curves
are divided into simple trapezoidal v-regions that are specially
designed to facilitate tessellation before they are rendered. It
also detects and resolves all cases of degeneracies in the original
surface primitive.

Eberly [4] introduces a simple ear clipping triangulation
algorithm with O(n2) asymptotic upper bound based on
the theory of ears for polygons [17]. Ear clipping is used



Download	English	Version:

https://daneshyari.com/en/article/440494

Download	Persian	Version:

https://daneshyari.com/article/440494

Daneshyari.com

https://daneshyari.com/en/article/440494
https://daneshyari.com/article/440494
https://daneshyari.com/

