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a b s t r a c t

We present a novel, real-time algorithm for computing the continuous penetration depth (CPD) between
two interpenetrating rigid models bounded by triangle meshes. Our algorithm guarantees gradient
continuity for the penetration depth (PD) results, unlike conventional penetration depth (PD) algorithms
that may have directional discontinuity due to the Euclidean projection operator involved with PD
computation. Moreover, unlike prior CPD algorithms, our algorithm is able to handle an orientation
change in the underlying model and deal with a topologically-complicated model with holes. Given two
intersectingmodels, we interpolate tangent planes continuously on the boundary of theMinkowski sums
between the models and find the closest point on the boundary using Phong projection. Given the high
complexity of computing the Minkowski sums for polygonal models in 3D, our algorithm estimates a
solution subspace for CPD and dynamically constructs and updates theMinkowski sums only locally in the
subspace. We implemented our algorithm on a standard PC platform and tested its performance in terms
of speed and continuity using various benchmarks of complicated rigidmodels, anddemonstrated that our
algorithm can compute CPD for general polygonalmodels consisting of tens of thousands of triangleswith
a hole in a few milli-seconds while guaranteeing the continuity of PD gradient. Moreover, our algorithm
can computemore optimal PD values than a state-of-the-art PD algorithm due to the dynamicMinkowski
sum computation.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Measuring the amount of interpenetration between overlap-
pingmodels is an important problem in geometric modeling, com-
puter graphics, computational geometry, and algorithmic robotics.
Awidely used distancemeasure for interpenetration is penetration
depth (PD), which is defined as a minimum translation to separate
overlapping models [1,2]. In simulated environments such as dy-
namics simulation, assembly planning, robot motion planning or
six-degree-of-freedom haptic rendering, model overlap happens
frequently due to numerical/control errors, interface latency or
user-in-the-loop inherent to the environments. Such a penetration
state is often considered an invalid state in computer simulation,

✩ This paper has been recommended for acceptance by Scott Schaefer and Charlie
C.L. Wang.
∗ Corresponding author.

E-mail addresses: youngeunlee@ewhain.net (Y. Lee), behare@gmail.com
(E. Behar), jmlien@cs.gmu.edu (J.-M. Lien), kimy@ewha.ac.kr (Y.J. Kim).

and PD often plays a major role in recovering the invalid state to a
valid, collision-free state; this type of approach is broadly classified
as a penalty-based system.

It is well-known that the PD can be computed using the
Minkowski sums. The Minkowski sums between A and B are
defined as [3,4].

A ⊕ B = {a + b | a ∈ A, b ∈ B} (1)
A ⊕ −B = {a − b | a ∈ A, b ∈ B}. (2)

IfA andB overlap, their penetration depth PD(A,B) is equivalent
to finding the minimum distance between the common origin of
A and B, o and the boundary surface of the Minkowski sums,
∂(A ⊕ −B) [2]:

PD(A,B) = {min ∥q∥ | q ∈ ∂(A ⊕ −B)}. (3)

In otherwords,we can compute PDbetweenA andB byprojecting
o onto the surface of Minkowski sums ∂(A ⊕ −B).

However, it is known that the definition of PD in Eq. (3) can lead
to a discontinuity in the direction of PD (i.e. the gradient of PD),
when o crosses the medial axis of ∂(A ⊕ −B) [5], as illustrated
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(a) PD using Euclidean projection. (b) CPD using Phong projection.

Fig. 1. In both figures, the thick rectangle is the surface of Minkowski sums and the dashed green lines represent its medial axis. The blue dots show the origin o as it moves
from o1 to o2 , and then o3 . The red dots qi show the projections of o on the surface of Minkowski sums, and the red arrows denote the projection directions. (a) The direction
of PD using conventional Euclidean projection is not continuous when o2 crosses the media axis. For example, the projection suddenly jumps from q2 to q′

2 even though the
magnitude of PD is still continuous. (b) The surface normals (the blue arrows) on the surface of Minkowski sums are continuously defined using Phong interpolation. The
projection results using Phong projection are continuous even if o2 is on the medial axis as the projection direction changes continuously along the corresponding surface
normal. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

in Fig. 1(a). This discontinuity problem is a critical issue in any
penalty-based system [6] that relies on PD as a measure of penalty
response, for instance, six-degree-of-freedom haptic rendering, as
it can induce serious simulation instability.

Recently, there has been a limited amount of research efforts
to put into solving the discontinuity problem in PD, a new PD
approach known as continuous penetration depth (CPD). Zhang
et al. [7] first proposed a possible solution for CPD using spherical
parameterization of configuration space. Lee and Kim [8] proposed
another CPD approach using Phong projection [8]. Unfortunately
both approaches are rather preliminary and limited in terms of
practical applicability as they do not work when the models rotate
or contain holes.
Main results:We present a novel algorithm to compute continuous
penetration depth in real-time between two intersecting models.
Our new CPD is defined using Phong projection on the subspace
of Minkowski sums. This guarantees the continuous change of a
PD gradient value with respect to infinitesimal rigid motion of the
underlyingmodel. In order to design an efficient CPD algorithm,we
conservatively predict a solution space of CPD using a conventional
PD algorithm based on Euclidean projection and construct an ϵ-
ball around the predicted solution space, then computeMinkowski
sums dynamically and locally inside the ϵ-ball. This dynamic
Minkowski-sum method is achieved by repairing the damage on
the Minkowski-sum surface due to infinitesimal rotation via the
new concepts of convex map (defined in Section 4) and gap
filling (Section 5). To the best of our knowledge, this is the first
practical method that handles general polyhedra for Minkowski-
sum computation. Then, we search for a CPD solution in the
local Minkowski sums. If such a solution does not exist, we
incrementally enlarge the ϵ-ball until a solution is found. We have
implemented our CPD algorithm on a conventional PC platform
and tested our algorithm with various benchmarking scenarios
including diverse motion sequences and models of complicated
geometry and topology. In our experiments, our algorithm can
compute CPD for models consisting of tens of thousands triangles
with holes in a fewmsecs while guaranteeing the continuity of PD.
Organization:The rest of the paper is organized as follows.
We briefly survey previous work relevant to PD and dynamic
Minkowski sum computation in Section 2. We discuss preliminary
information and give an overview of the algorithm in Section 3.
In Sections 4 and 5, we propose our algorithm to construct a local

Minkowski sum, and explain how to perform Phong projection
efficiently in Section 6. We show experimental results in Section 7.
Finally, we conclude our work and provide a discussion on future
work in Section 8.

2. Previous work

In this section, we briefly survey the work relevant to our
research, namely penetration depth computation and dynamic
Minkowski sum for rigid models.

2.1. Penetration depth computation for rigid models

Penetration depth. The penetration depth (PD) can be computed
using a Minkowski sum-based formulation [1]. It is well-known
that complexity ofMinkowski sum computation isO(n2) andO(n6)
for convex and non-convex models in 3D, respectively, where n
is the number of facets in the objects. For convex models, exact
PD can be computed using a Dobkin–Kirkpatrick hierarchy-based
acceleration structure [2] and a randomized algorithm [9]. There
exist various algorithms to compute approximate PD for convex
models. Cameron [4] computed PD based on upper and lower
bounds. Bergen [10] and Kim et al. [11] computed approximated
PD in real-time.

For non-convex models, Hachenberger [12] proposed an exact
PD computation algorithm based on Minkowski sums, but it
is relatively slow. Various approximation algorithms have been
developed for non-convex objects, but they are rather slow in
practice [13,14]. Later, Je et al. [15] proposed a real-time algorithm
based on iterative projection on the Minkowski sum.
Continuous penetration depth. To the best of our knowledge,
there are only two works related to CPD. Zhang et al. [7]
first introduced the notion of CPD and defined the CPD using
a spherical parameterization of configuration space. Since this
algorithm is based on sampling and machine learning, its runtime
performance is very fast. However, the algorithm requires heavy
preprocessing for configuration space approximation and spherical
parameterization that makes it very challenging when models
rotate, as the algorithm needs to recompute the entire preprocess
from scratch. Moreover, the spherical parameterization does not
work when the configuration space is not homeomorphic to a
sphere. To circumvent these issues, Lee and Kim [8] compute CPD
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