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Subdivision surfaces are a common tool in geometric modelling, especially in computer graphics and
computer animation. Nowadays, this concept has become established in engineering too. The focus here
is on quadrilateral control grids and generalized B-spline surfaces of Catmull-Clark subdivision type. In
the classical theory, a subdivision surface is defined as the limit of the repetitive application of subdivision
rules to the control grid. Based on Stam'’s idea, the labour-intensive process can be avoided by using
a natural parameterization of the limit surface. However, the simplification is not free of defects. At
singularities, the smoothness of the classically defined limit surface has been lost. This paper describes
how to rescue the parameterization by using a subdivision basis function that is consistent with the
classical definition, but is expensive to compute. Based on this, we introduce a characteristic subdivision
finite element and use it to discretize integrals on subdivision surfaces. We show that in the integral
representation the complicated parameterization reduces to a decisive factor. We compare the natural
and the characteristic subdivision finite element approach solving PDEs on surfaces. As model problem
we consider the mean curvature flow, whereby the computation is done on the step-by-step changing

geometry.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The subdivision surface concept came up with the idea of
constructing smooth free-form surfaces by an iterative refinement
of coarse control grids. A control grid is given by a polyhedral
surface embedded in the Euclidean space R>. It is the most basic
geometric shape representation tool in modelling and engineering
systems. The refinement is done step-by-step where the repeated
application of subdivision rules to the emerging grid produces finer
control grids that converge towards a smooth surface, called the
limit surface. A single subdivision step can be written in matrix
form obtaining the so called subdivision matrix. By means of
the eigendecomposition of the subdivision matrix, we are able
to evaluate the limit surface in given control grid vertices. In
accordance to the used subdivision rules, the emerging limit
surfaces characterize different classes of surfaces. For example,
Lane and Riesenfeld [1] show that using weights from Pascal’s
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triangle produces piecewise B-spline surfaces of certain degree.
However, one may have in mind that the existence of extraordinary
vertices influences the smoothness of the limit surfaces. This
has been extensively studied in [2,3]. Over the years, various
subdivision schemes have been developed. For an overview of
subdivision surfaces, we refer to Peters and Reif [4]; Cashman [5];
Ma [6].

To assemble the limit surface using subdivision might be a
laborious process. By comparison, for some of the subdivision
schemes, the limit surface has a piecewise parametric limit surface
representation by which it can be computed in each point on
the surface. In [7,8], Stam has introduced an exact evaluation
scheme without any explicit subdivision of the initial control
grid. Using discrete Fourier transform, an eigenstructure of the
local subdivision matrix is obtained. In consequence of using
Stam’s idea, the labour-intensive subdivision process can be
avoided, but with an undesirable side effect; the smoothness at
the extraordinary vertices gets lost. Nevertheless, based on the
underlying basis functions, the limit surface can be partitioned
according to the control grid elements. A subdivision based finite
element approach can be achieved. Such a construction has been
firstly introduced to the area of engineering in [9]. Back then, it
seemed to be promising. The artefacts related to the incorrect
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integration over the irregular elements may not have been fully
identified.

While performing numerical experiments of the convergence
of natural subdivision finite elements difficulties have been
encountered in [10]. Due to the unbounded estimates over
irregular elements, the reason for the errors has been indicated
in the incorrect use of the Gaussian quadrature. The defective
integration has been also confirmed by the studies in [11]. The
reason for this is the limit surface representation for irregular
elements that is given by a piecewise polynomial function.
At this point, the general Gaussian quadrature is therefore an
inappropriate method for an exact approximation. In order to
improve this, the piecewise evaluation up to a certain subdivision
depth of the elements should be performed.

1.1. Contributions

In this paper, we introduce an isoparametric subdivision
finite element approach that is consistent with the classical
subdivision surfaces. This means that the presented shape
functions maintain the C!-continuity at the irregular vertices.
We give a precise definition of subdivision basis functions based
on the Catmull-Clark subdivision. We distinguish between the
natural and the characteristic parameterization of the limit surface.
The last one ensures the smoothness of the classical defined
subdivision surfaces, but the calculation is very expensive. We
integrate the concept of element-based generating splines and
isoparametric concept to obtain the corresponding finite element
approaches. In addition, we derive the mass matrix and the
stiffness matrix using the characteristic finite elements in greater
detail. These are used for the integral representation of PDEs on
subdivision surfaces. We show that the complex issue of deriving
the inverse of the characteristic map reduces to an appropriate
scaling factor in the integral representation.

As model problem, we investigate the mean curvature flow on
closed subdivision surfaces. Therefore, the calculation is performed
on a step-by-step evolving geometry. The introduced characteristic
finite element improves the consistency of the subdivision control
grid and, equivalently, of the limit surface. To verify this, we
compare our result with the commonly used natural subdivision
finite element.

1.2. Related work

Catmull-Clark subdivision surfaces [12] is one of the first
and most commonly used subdivision schemes. In the limit of
the subdivision, an almost everywhere C2-continuous surface
is obtained, except the finite set of extraordinary vertices; but
even there the normal continuity is ensured. In [8], an efficient
evaluation of the limit surface is presented. Based on this, the
so called natural parameterization is defined. However, Stam'’s
parameterization results only in C°-continuity at the extraordinary
vertices. To avoid this defect, a reparameterization based on the
characteristic map can be used. Due to the computational effort, it
does not seem to be feasible in practice [ 13]. On the other hand, the
Catmull-Clark subdivision basis functions are square integrable [ 3]
and therefore form a basis of the Sobolev space H2. This provides a
solid foundation for a finite element construction.

A finite element discretization with subdivision surfaces has
been introduced in [9,14,15]. Conforming Loop subdivision finite
elements on triangular meshes has been used to discretize
Kirchhoff-Love’s type of thin shell model. An extension of the
Catmull-Clark’s subdivision scheme to volumetric solids and a
corresponding finite element simulation of elastic bodies has
been proposed by Burkhart et al. [16]. In [17], Koiter’s thin
shell model has been conforming discretized using Catmull-Clark

finite elements and applied to physical simulations, deformation-
based modelling and calculation of free vibration modes. A
numerical convergence analysis of this approach has been
performed by Barendrecht [10]. Solving Poisson’s equation on
the disc, Nguyen et al. [11] present a classification of the
Catmull-Clark finite elements according to several classical,
discrete differential and isogeometric methods. In [18], adaptive
isogeometric analysis is performed using truncated hierarchical
Catmull-Clark subdivision splines. An isogeometric discretization
approach to partial differential equations on Loop subdivision
surfaces and a comparison of different quadrature schemes is
discussed in [19]. Recently, Riffnaller-Schiefer et al. [20] have
presented an extension subdivision based isogeometric analysis
of the Kirchhoff-Love thin shell to NURBS compatible subdivision
surfaces.

2. Generalized basis functions of Catmull-Clark type

One of the oldest subdivision schemes to iteratively generate
smooth surfaces from coarse control grids is the Catmull-Clark
scheme [12]. The scheme describes a generalization of tensor
product bicubic B-splines to meshes with arbitrary topology.
At each stage of the process, a control grid with quadrilateral
connectivity is generated. The Catmull-Clark limit surface is an
almost C2-continuous piecewise spline surface with singularities
at the extraordinary vertices, i.e. vertices with valence unequal to
four. Here, a singularity is a point where the general well-behaving
differentiability fails.

In [8] a stable and efficient scheme has been introduced that
allows for a direct evaluation of the limit surface at any point of the
domain. The limit surface can be computed elementwise without
any explicit subdivision of the control grid. Elementwise means
that for each element of the grid a surface patch is obtained, with
a smooth transition between the patches. For this purpose, the
combinatorial connectivity of the one-ring of the element has to
be examined. A one-ring of an element is the union of the element
and the elements sharing at least one vertex with this element.
Due to the connectivity, we distinguish two types of occurring
elements, regular and irregular elements, and characterize the
surface patches accordingly. If the element is regular, i.e., each
vertex of the element has valence four, the corresponding surface
patch is a bicubic B-spline patch. Otherwise, if one of the vertices
is an extraordinary vertex, the element is called irregular. In this
case, the surface patch is given by an infinite sequence of nested
B-spline patches. We restrict ourselves to elements with at most
one extraordinary vertex.

2.1. Natural generating spline

Given an arbitrary closed control grid Co. We consider an
element Q; C Cq and its one-ring. Using Stam’s parameterization,
we are able to derive the corresponding set of element-based basis
functions.

Definition 2.1 (Natural Generating Spline). For an element Q. of
the Catmull-Clark grid G, we consider the set of basis functions
{b]’-*|j =0,...,K — 1}. The factor K = 2v + 8, where v denotes
the valence of the extraordinary vertex, describes the size of the
set of vertices in the one-ring of Q.. Let b (u, v) be a vector, where
the entries b;, i = 0, ..., 15 are the 16 uniform bicubic B-spline
basis functions defined over the unit square [0, 1]>. The natural
generating spline is given by the vector

b* = (b3, b5, ... b))
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