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a b s t r a c t

This paper presents a novel multi-frame graph matching algorithm for reliable partial alignments among
point clouds. We use this algorithm to stitch frames for 3D environment reconstruction. The idea is to
utilize both descriptor similarity and mutual spatial coherency of features existed in multiple frames to
match these frames. The proposed multi-frame matching algorithm can extract coarse correspondence
among multiple point clouds more reliably than pairwise matching algorithms, especially when the data
are noisy and the overlap is relatively small.When there are insufficient consistent features that appeared
in all these frames, our algorithm reduces the number of frames to match to deal with it adaptively.
Hence, it is particularly suitable for cost-efficient robotic Simultaneous Localization andMapping (SLAM).
We design a prototype system integrating our matching and reconstruction algorithm on a remotely
controlled navigation iRobot, equipped with a Kinect and a Raspberry Pi. Our reconstruction experiments
demonstrate the effectiveness of our algorithm and design.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Given a set of point clouds sequentially scanned from a 3D
scene, to match and stitch these partially overlapped point data
and reconstruct the entire scene is a fundamental problem in com-
puter graphics, reverse engineering, and robotic vision. A direct
application is the famous Simultaneous Localization And Mapping
(SLAM) problem where a robot equipped with a range scanning
sensor can navigate around an unknown environment to recon-
struct the surrounding and locate its own position. Professional
outdoor SLAM systems often use expensive LIDAR laser cameras
mounted on a vehicle for the urban scanning and mapping. For
indoor SLAM, in contrast, smaller and cheaper sensors such as
Kinect [1] and PrimeSense [2] can be used instead. These out-
door/indoor range scanning cameras often capture not only color
images, but also depth information of the scene. The produced
RGB-D image sequences, combining pixel-wise color and depth in-
formation, allow us to more easily match correlated frames, trans-
form and stitch all the scans into a global coordinate system, and
reconstruct the surrounding 3D environment.
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In this project, we design an indoor prototype SLAM system,
using a mobile iRobot to navigate and map an unknown envi-
ronment. The iRobot can either move randomly or be remotely
controlled. We mount on this iRobot a Kinect sensor, which con-
tinuously acquires RGB-D image data of the surrounding envi-
ronment. In general, several possible approaches can be adopted
to process these data for SLAM and environment reconstruction.
(1) One is to let the robot carry a powerful-enough processing unit,
e.g., a laptop, during its navigation. Then the acquired camera data
can be directly processed locally [3]. However, by this approach,
the size and cost of the robot will increase significantly, making
the system not suitable for narrow corridors or hazardous envi-
ronments (e.g. with flooding floors); also, the extra weight of the
(laptop) processor often takes up most of the load capacity of the
robot and makes it energy-inefficient. (2) The second approach is
to just let the robot carry a hard disk to save the scan data. The data
will be processed after the robot returns and the data in the disk are
extracted. However, with this approach, we are not able to simul-
taneouslymonitor the robot and control itsmovement. In addition,
to navigate inside a complex and unknown environment without
remote human control, the system needs an effective real-time au-
tonomous path planning scheme, which is highly challenging and
again requires a powerful processor to be carried by the robot. (3) A
third approach is to use an integrated system to obtain data from
the camera and transfer them to the control center through awire-
less network. The integrated systemcan be a small and inexpensive
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Fig. 1. Kinect-fusion (a–d) and ICP-based (e–h) algorithms fail to stitch frames
when camera shift is big (i.e., the overlap between frames is small). (a–b) are the
two frames to match, (c) is a global view of the offset between the two frames in
a same coordinate, and (d) shows a snapshot where the Kinect-fusion program [5]
fails in matching these frames. (e–g) illustrate another similar scene with offset of
two frames, and (h) shows undesirable stitching result based on pairwise matching
using SIFT+RANSAC [9].

chip such as Raspberry Pi [4], upon which data transfer and robot
control can be handled easily.With this design, the data can be pro-
cessed remotely, and a user can (nearly-) simultaneously monitor
and control the robot to finish the navigation and mapping. In our
experiments, we adopt this third approach in our design of robotic
navigation and mapping. Whichever way the robot is designed, a
key geometric modeling problem to tackle is how to reliably match
sequential geometric data sets obtained by the robot. Developing
such a reliable matching algorithm is the focus of this paper.

Considering the sequentially acquired RGB-D data sets, Kinect-
fusion [5] and its variants [6–10] are popular algorithms used
for real-time 3D reconstruction. In these algorithms, the acquired
RGB-D images are sequentially aligned with the previous frame
using variants of the iterative closest point (ICP) algorithm; GPUs
are fully utilized to accelerate the processing speed for real-time
performance.

However, a key assumption of these algorithms is that the
acquisition frame rate is high and adjacent frames do not shift
a lot. If a big camera shift exists between consecutive shots,
these algorithms are prone to fail, because ICP-based matching
easily gets trapped by local minima. Fig. 1(a–d) shows such an
example. Furthermore, efficiently handling such data may not
be easily achieved by a practical cost-efficient mobile-working
system: thewireless connection is often not fast enough to support
communication in such a high frame-rate speed, and matching
data in a 30fps rate requires a powerful processor with advanced
GPUs.

Another type of approach [11–14] is to extract a set of features,
then match them, rather than matching all the points, from differ-
ent frames. The general pipeline of such feature-matching based
methods has four steps: feature detection, feature descriptor com-
putation, feature mapping, and transformation estimation. Pair-
wise matches can also be globally refined to reduce accumulated
errors or ensure certain groupwise geometric consistency [15–
17]. These approaches model and prune many pairwise matchings
together, and hence, can work more reliably under noisy or small-
overlap scenarios. However, they do not handle sequential stream-
ing data well due to the high computational complexity. Although
many geometric matching algorithms have been developed in re-
cent years [18], with the decrease on data acquisition frame rate,
the overlap between two frames becomes smaller and smaller.
This still poses significant challenge to the current partialmatching
algorithms. Fig. 1(e–h) illustrate a failure example when match-
ing two frames with relatively small overlap using a SIFT–RANSAC
matching algorithm [9].

Based on above observations, we believe developing a novel
partial matching algorithm, which could more reliably align noisy
data frames undergoing significant camera shift (hence, correlated
frames only have small overlap regions), will greatly benefit the

practical reconstruction from dynamic robotic environment scan.
In this paper, we propose a new algorithm for more robust
matching of noisy and small-overlapped point cloud data sets. The
main contributions of this paper include:

1. a novel multi-frame graph matching algorithm to map noisy
data sets with relatively small overlaps;

2. an inexpensive robotic prototype system using iRobot, Rasp-
berry Pi, and Kinect sensors, which demonstrates our matching
algorithm’s application on 3D indoor environment mapping.

2. Related work

We briefly review closely related work on 3D reconstruction
from sequential RGB-D data, and refer the readers to the survey
papers [19,20]. There are two general reconstruction approaches:
(1) Dense matching methods, which analyze all points/pixels
between two frames based on their geometric and/or photometric
characters.

(2) Feature matching methods, which first solve a coarse
correspondence among features in different frames then compute
inter-frame alignment based on this coarse correspondence.

2.1. Dense matching approaches

One branch of environment reconstruction is to utilize all pixels
in the current RGB-D frame to match with the previous frame, also
knownasDense-SLAM.Kerl et al. [21] computedphotometric char-
acters fromRGB frame and geometric characters fromDepth frame
between every two frames to get camera positions. However, the
high requirements of photometric consistency limit the baseline of
the matches, typically narrower than those that features matching
algorithms allow. This has a great impact in reconstruction accu-
racy, which requires wide baseline observations to reduce depth
uncertainty. Also, they are quite affected by rolling-shutter, auto
gain, and auto exposure artifacts. To enhance the performance,
[22,23] perform offline analysis of camera trajectories to achieve
dense scene reconstruction and high fidelity texture mapping.
However, these approaches need to run off-line for hours using
parallel hardware, and thus are not suitable for a low-cost robot
carried sensing and computing device.

In the software Kinect fusion [5] developed byMicrosoft, conse-
quent frames are stitched using a GPU accelerated ICP algorithm.
The nearest correspondences of all the points in the RGB-D data
are iteratively calculated and used to refine the transformation
between frames. Whelan et al. [7] implemented an RGBD based
ICP and implemented it in GPU, which is an enhancement of the
original depth data based ICP. Nießner et al. [10] employ an iner-
tial measurement unit (a gyroscope embedded in Kinect) to record
camera pose, and to decide ICP initial position and reduce the num-
ber of ICP iterations needed in stitching RGB-D frames. Another ef-
fective invariant of Kinect fusion based densematchingmethod for
indoor scene reconstruction, suggested by Zhang et al. [24], em-
ploys surface fitting on point clouds to detect flat planar patches
which are the major salient structures exhibited in an indoor en-
vironment. This algorithm performs desirably in reconstructing
noisy Kinect scans for large indoor scenes. These approaches often
require a powerful graphic hardware to carry the parallel compu-
tation or need an assisting hardware to adjust the error generated
by the ICP algorithm [25,26]. This usually significantly increases
the cost of the robot. Furthermore, alignment based on ICP con-
verges to local optimum near the initial alignment, hence, it is not
robust when handling large inter-frame motion or planar surface
data, andwill result in incorrect stitching or visual artifacts in prac-
tical reconstruction from scans with low frame rates [27].
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