Sedimentological, mineralogical and geochemical characteristics of the ooids in Cleopatra (Sedir Island, Gökova Bay, SW Turkey) and Alexandria (NW Egypt) Beach sediments: A comparison and reality of myth of the love

Muhsin Eren a,⁎, Cüneyt Güler a, Selahattin Kadir b, Hamdalla Wanas c

⁎ Corresponding author. Fax: +90 324 361 0032.
E-mail addresses: m.eren@yahoo.com, meрен@mersin.edu.tr (M. Eren).

1. Introduction

Sedir Island in Gökova Bay (Marmaris, Muğla), southwestern Turkey, is famous with Cleopatra Beach and its distinctive white sands, consisting mainly of ooids. These ooid-rich sediments are called myth of the love. According to the myth, these white ooid-rich sediments were shipped from the Alexandria Beach in Egypt by the Roman leader, Marcus Antonius, for his lover Cleopatra. Ooids of both beaches have been compared in terms of sedimentology, mineralogy and geochemistry to determine reality of the myth of love. Sieve analyses exhibit that sediments of Cleopatra Beach are slightly better sorted than Alexandria Beach sediments, and have relatively smaller sized ooids, interpreted to represent a relatively less agitated environment. All ooids are composed mainly of aragonite characterized by high Sr contents (>8600 mg/kg). Hierarchical Cluster Analysis, the cross-plot of δ¹⁸O aragonite versus δ¹³C aragonite Values of ooids, and the presence of detrital grains such as gneiss and schist hint on two distinct groups of samples that correspond to the Cleopatra and Alexandria Beach ooids. These results suggest that the myth may not be realistic, and the ooids on the shore of Sedir Island were formed in-situ, e.g., during the Late Holocene.

http://dx.doi.org/10.1016/j.chemer.2016.02.001
0009-2819/© 2016 Elsevier GmbH. All rights reserved.
2. Geological setting

The Cleopatra Beach sediments are found in a small cove at the northern margin of Sedir Island facing Gökova Bay (Fig. 1a, b). Girgin and Ertürk (2010) provide detailed information on morphology of Sedir Island and its environs. Geology and geomorphology of Sedir Island are considered to be related to rifting of Gökova Bay and its infills (Kurt et al., 1999; Çağlar and Duvarci, 2001). Cleopatra Beach is approximately 30 m long in the east–west direction and 15 m wide in the north–south direction, and has a sediment thickness of up to 80 cm (Ozhan, 1990; El-Sammak and Tucker, 2002; Girgin and Ertürk, 2010). The thickness of the ooid-rich sediments decreases towards the sea and the sands disappear at a depth of 15 m (El-Sammak and Tucker, 2002). The island is made up of Tertiary (Miocene) polygenic conglomerates, which underlie the ooid-rich sediments in the small cove (Öztürk et al., 1998; El-Sammak and Tucker, 2002; Girgin and Ertürk, 2010). These conglomerates are comprised of mainly well rounded pebbles of recrystalized limestone, gneiss, schist, quartz and chert which are derived from the Lycian Nappes (Görür et al., 1995). However, Üsenmez et al. (1993), Çağlar and Duvarci (2001) and Öztürk (2004) suggest Pliocene age for these conglomerates.

Little information is available in the literature concerning the northern Mediterranean coast of Egypt along which recent coastal sediments and a series of carbonate ridges extend parallel to the present shoreline (Fig. 1a, c; Wali et al., 1994; Hassouba, 1995, 1996; El-Asmar and Wood, 2000). At least eight carbonate ridges are distinguished (Stanley and Hamza, 1992; Wali et al., 1994), of which the first four are well developed (El-Shahat, 1995; El-Asmar and Wood, 2000). These ridges are beach dunes of Late Pliocene to Early Holocene age and composed mainly of white oolitic and biogenic grainstones (Wali et al., 1994; El-Shahat, 1995; Hassouba, 1995, 1996; El-Asmar and Wood, 2000). The coastal ridges have undergone diagenesis in marine-phreatic and freshwater-phreatic environments (Wali et al., 1994). The ridges are separated by linear depressions filled by sabkha-lagoonal deposits (Hassouba, 1995, 1996). The Quaternary coastal plain is confined by Middle Miocene Marmarican limestone forming a tableland (Hassouba, 1995; El-Asmar and Wood, 2000).
دانلود مقاله

http://daneshyari.com/article/4406801

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات