
Computer-Aided Design 77 (2016) 98–106

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Out-of-core real-time haptic interaction on very large models
A. Aguilera a, F.J. Melero b,∗, F.R. Feito a

a Dpt. Informática, Univ. Jaén, Spain
b Dpt. Lenguajes y Sistemas Informáticos, Univ. Granada, Spain

a r t i c l e i n f o

Article history:
Received 28 September 2015
Accepted 4 April 2016

Keywords:
Haptic rendering
Collision detection
Hierarchical bounding volumes

a b s t r a c t

In this paper we address the problem of fast inclusion tests and distance calculation in very large mod-
els, an important issue in the context of environments involving haptic interaction or collision detection.
Unfortunately, existing haptic rendering or collision detection toolkits cannot handle polygonal models
obtained from 3D digitized point clouds unless the models are simplified up to a few thousand polygons,
which leads to an important lack of detail for the scannedpieces.Wepropose a data structure that is able to
manage very large polygonalmodels (over 25Mpolygons), andwe explain how this can be used in order to
compute the inclusion of a point into the solid surface very efficiently, performing several thousand point-
in-solid tests per second. Ourmethod uses a data structure called EBP-Octree (Extended Bounding-Planes
Octree), which is a very tight hierarchy of convex bounding volumes. Based on a spatial decomposition of
the model using an octree, at each node it defines a bounding volume using a subset of the planes of the
portion of the polygonalmodel contained at that node.We use the EBP-Octree in a haptic interaction envi-
ronment, where distance tests and the orientation of collided triangles must be accurate and fast. We also
demonstrate that the proposed algorithm largely meets the interactive query rate demanded by a haptic
interaction (1 kHz), despite being executed in a single CPU thread on a commonly available computer.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Haptic interaction in virtual environments has certain time
restrictions that require much more efficient data structures and
algorithms than other collision detection techniques. When a user
handles a 6 degrees-of-freedom (DOF) haptic device, he expects
to perceive the real contact with the surface, and not just an
approximation of it. It is generally accepted that a minimum
update rate of 1 kHz is required for the collision detection thread
to provide continuous (i.e. realistic) feedback [1]. Hence, the
algorithm must be able to dispatch every collision or distance
query in less than amillisecond. It is not straightforward to achieve
this for very large polygonal models obtained from 3D scanners. In
the context of art curators, for example, it is not conceivable to use
simplified models of a few thousand polygons (like those usually
used in traditional haptic applications) to virtually plan or test the
restoration process of a sculpture.

We address the problem of fast inclusion tests and distance
calculation in very large models by developing a system that

∗ Corresponding author.
E-mail addresses: angel@ujaen.es (A. Aguilera), fjmelero@ugr.es (F.J. Melero),

ffeito@ujaen.es (F.R. Feito).

performs several thousand point-in-solid and distance tests per
second on models over 25M polygons. Our method uses a data
structure termed EBP-Octree (Extended Bounding-Planes Octree).
This is a very tight hierarchy of convex bounding volumes that,
supported by a spatial decomposition of themodel using an octree,
defines a bounding volume at each node using a subset of the
planes of the portion of the polygonal model contained at that
node. To summarise, our main contributions are:

• A data structure, the EPB-Octree, which can virtually host
models of unlimited-size. Our tests only used level 11 of 20
using models of 30 million polygons.

• A point-in-solid test that runs comfortably at a haptic rendering
frame rate when applied to very large polygonal models,
achieving from 2.5 kHz (purely random point test) to 32 kHz
(haptic-like paths).

• A distance and contact normal function that allows us to use
the EBP-Octree in haptic applications designed for training or
planning for virtual curators that runs at around 1 MHz in
classic haptic interaction over the surface of models over 25M
polygons.

We tested the EBP-Octree in a simulated haptic interaction
environment, where distance tests and the orientation of collided
triangles must be accurate and fast. In addition, we demonstrate

http://dx.doi.org/10.1016/j.cad.2016.04.002
0010-4485/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.cad.2016.04.002
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2016.04.002&domain=pdf
mailto:angel@ujaen.es
mailto:fjmelero@ugr.es
mailto:ffeito@ujaen.es
http://dx.doi.org/10.1016/j.cad.2016.04.002


A. Aguilera et al. / Computer-Aided Design 77 (2016) 98–106 99

that the proposed algorithm largely meets the interactive query
rate demanded by a haptic interaction (1 kHz), despite being
executed in a single CPU thread on a home-featured computer. We
tried to test our models using other state-of-the-art approaches,
but none of the packages and librariesweknowwere able to handle
such large models.

Section 2 reviews the most relevant prior work, whereas
Section 3 presents the data structure and its related construction
algorithms. Section 4 specifies the out-of-core caching mechanism
that allows us to perform point-in-solid and distance tests, the
description and experimental results of which are presented in
Sections 5.1 and 5.2 respectively.

2. Related work

Haptic Rendering is a term used to describe the process of calcu-
lating a reaction force for a givenposition of thehaptic feedbackde-
vice. It is closely related to collision detection algorithms, and this
area of research has been extensively investigated by the graphics
community. Lin et al. [2] introduce collision detection concepts and
offer an overview of existing algorithms and data structures. How-
ever, collision detection algorithms are not directly applicable to
haptic rendering, since it is not only necessary to detect collisions,
but also to compute distances and normals at a high frequency rate
(around 1 kHz). The simplest way of approaching haptic render-
ing is to consider a point-based device, as described in [3] when
explaining the contact levels of detail (CLODs) model. With this ap-
proach, the main task is to compute distances from the haptic 3D
cursor to the model’s surface. When the distance is below a pre-
set threshold, the haptic rendering thread presents a given force,
calculated to avoid penetrating into the model.

The well known PQP package developed by Larsen et al. [4]
uses swept sphere volumes as a bounding hierarchy for triangle
clouds to detect collision between models. However, there is no
possibility of testing its performance on very dense meshes. In [5],
Gregory et al. present the basis for theHCollidemethod, using quite
smallmodels. A solution proposed byOtaduy in [6] handlesmodels
below 50k polygons.

Distance fields have been used extensively for collision detec-
tion and rapid distance computation. There are three main ap-
proaches to build distance fields: those based on Voronoi diagrams
[7,8], on distance propagation methods [9] or techniques that use
trees and grids as supporting data structures. Among the latter, a
three-dimensional grid is used to store the distance field in [10],
while an Adaptive Distance Field using an octree was developed
in [11]. A quite original approach is provided by the haptic tex-
tures of Theoktisto et al. [12]. This proposes a texture-based normal
mapping of the surface in a similar manner as bumpmapping does
for rendering in order to obtain a fast distance query rate.

McNeely [13] implements a voxelized model of the surface,
the Voxmap, to give approximate distance values in a 6-DOF hap-
tic environment, testing it in a 3-DOF haptic environment with a
model of 593k polygons. In [14], Barbic et al. presented a CPU-
based method that uses the Voxmap point shell to create distance
maps for deformable models. In this work, the authors state that
‘‘only small point shells fit into the computational budget of one
haptic cycle’’. They then propose using a hierarchy that handles
models of up to 256k points. The work by Gueziec [15] generates a
multiresolution hierarchy of bounding volumes via geometric sim-
plification of the polygonalmodel in order to dynamically compute
the distance from a point to an arbitrary polygonalmesh. However,
the largest model tested is composed of 60k polygons. Similarly
sized models can be found in recent papers based on GPU and par-
allel programming, as in the case of Lauterbach’swork [16]where a
parallel implementation of OBB (Object Oriented Bounding Box) and
rectangular swept spheres runs over models of up to 75k triangles,

and the CPU/GPU-based approach of Pabst et al. [17], where the
largest model contains 146k polygons and the continuous collision
detection computation time is 184 ms for this model in a single
thread. Morvan et al. [18], also using a GPU approach, handle mod-
els of up to 1.7Mpolygons, offering proximity query rates of around
5 ms.

In [19],Walker et al. describe how to perform haptic interaction
on huge terrain models (100M triangles, 2.5D), but their technique
is not usable on 3D models, as they use parallel computer vision
algorithms to detect collision by projecting the proxy onto the
terrain image. The proposal by Yoon [20] runs on models similar
to those presented in our paper, but their goal was to achieve
interactive rendering frame rates (12–30 frames per second, 18ms
per collision query), not haptic rendering frame rates.

3. EBP-Octree data structure

Our proposal was inspired by the BP-Octree data structure [21],
originally conceived for progressive visualization, which guided
our work to create a data structure suitable for collision detection.
The most characteristic feature of this data structure is that each
node stores a set of planes that define a convex bounding volume
of the part of the model contained in that node. These planes are
restricted to be either face planes or planes parallel to faces, so it
is possible to maintain as much of the original surface orientation
as possible. This data structure leads to a tighter bounding volume
than other BVHs, e.g. KDOPs or AABBs, as the plane’s orientation is
unrestricted and the number of planes at each node is not prede-
fined.

Our EBP-Octree building process, described in the following
subsections, is based on the steps described by Melero et al.
in [21]. In addition, several new features and algorithms have been
developed in order to achieve our goal of handling huge polygonal
models at interactive haptic query rates. Noteworthy among these
improvements are: the extension to a 64-bit octcode, the detection
of special configurations and white/black nodes, the management
of the temporary file system that handles the huge amount of
geometric data computed during the EBP-Octree construction, and
the cache-like out-of-core management of the tree. This means it
can be used in haptic interaction environments, computing not
only point-in-solid tests but also the distance and orientation of
collisions.

3.1. Computing bounding volumes at leaves

Following the BP-Octree bottom-up construction algorithm,
we define the deepest level of the tree as the level whose cell
size is at least five times the average triangle edge length. Then,
using that three dimensional grid, we apply an exhaustive 3DDDA
(3-Dimensional Digital Differential Analyzer) algorithm to each
polygon to detect any traversed cell, using Morton codes [22] to
locate every cell (i.e. leaf node) in the octree space. In our new
proposal, the octcode is 64 bits long, which allows us to handle
octrees of up to 19 levels: 57 bits for the code itself and 5 bits for the
level that the code belongs to. This makes the EBP-Octree capable
of holding polygonal models of almost any size, limited only by
the computer’s available disk space, while the BP-Octrees 32 bit
octcode limits the size of the input models to about 10M polygons
(9 levels).

Once the polygons are distributed among the leaf nodes, we
compute the bounding volume (illustrated in two dimensions in
Fig. 2) in the same manner as in [21]. In order to recall briefly how
this works, we describe the process visually in Fig. 2:

• At each leaf node nl we define a set of candidate planes. These
candidate planes are the set of supporting planes of eachpolygon
of the node nl.



Download English Version:

https://daneshyari.com/en/article/440698

Download Persian Version:

https://daneshyari.com/article/440698

Daneshyari.com

https://daneshyari.com/en/article/440698
https://daneshyari.com/article/440698
https://daneshyari.com

