
Chemosphere 159 (2016) 132-137

Contents lists available at ScienceDirect

Chemosphere

journal homepage: www.elsevier.com/locate/chemosphere

Catalytic decomposition of gaseous PCDD/Fs over V_2O_5/TiO_2 -CNTs catalyst: Effect of NO and NH₃ addition

CrossMark

Chemosphere

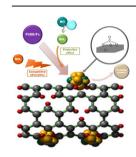
霐

Qiulin Wang ^{a, b}, Pao Chang Hung ^c, Shengyong Lu ^{b, *}, Moo Been Chang ^c

^a School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
^b State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
^c Graduate Institute of Environmental Engineering, National Central University, No. 300, Jungdad Road, Chungli 320, Taiwan

HIGHLIGHTS

- Catalytic decomposition of gaseous PCDD/Fs over V₂O₅/TiO₂-CNTs composite catalysts.
- The removal efficiency of PCDD/Fs reaches 99.9% at 150 °C while adsorption is the main reason.
- NH₃ restricts the adsorption of PCDD/ Fs on catalyst, hence, reduces the removal efficiency.
- The positive effect of NO is due to the oxidation of NO to NO₂ that speeds up the catalyst reoxidation.
- The activation energies for OCDD/F via catalysis are evidently reduced in the addition of NO and NH₃.


A R T I C L E I N F O

Article history: Received 23 December 2015 Received in revised form 17 May 2016 Accepted 23 May 2016 Available online 9 June 2016

Handling Editor: Hyunook Kim

Keywords: Catalytic decomposition Carbon nanotubes PCDD/Fs NO_x Simultaneous control

ABSTRACT

There is a strong need for a control technology that simultaneously achieving the abatement of PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans) and nitrogen oxides (NO_x) emissions in waste incineration industry. TiO₂ and carbon nanotubes (CNTs) were used as composite carriers to support vanadium oxide as an innovative catalyst to simultaneously control PCDD/Fs and NO emissions. The removal efficiencies (RE) of PCDD/Fs by V₂O₅/TiO₂-CNTs catalyst under a space velocity (SV) of 20,000 h⁻¹ reaches 99.9% at 150 °C and adsorption is supposed to be the main mechanism at this temperature. The influence of NO–NH₃ reaction on PCDD/Fs catalytic reaction is investigated. The kinetics analysis exhibits that the addition of NO and NH₃ reduces the activation energies for OCDD (octachlorodibenzo-p-dioxin) and OCDF (octachlorodibenzofuran) decomposition to 3.6 kJ/mol and 5.4 kJ/mol respectively.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The active temperatures of conventional selective catalytic reduction (SCR) catalyst (e.g V_2O_5/TiO_2) for PCDD/Fs destruction (200–300 °C) (Chang et al., 2009; Ji et al., 2013, 2014; Yang et al.,

* Corresponding author. E-mail address: lushy@zju.edu.cn (S. Lu). 2008) and deNO_x via NH₃-SCR (300–400 °C) (Roy et al., 2009; Skalska et al., 2010) are different. To accomplish the combining catalytic removal of PCDD/Fs and NO_x generated during waste incineration, it is essential to develop inexpensive novel catalysts with high destruction efficiency at lower temperature (<200 °C) (Dvořák et al., 2010; Liu et al., 2015).

Carbon nanotubes (CNTs) has been proved to be the excellent sorbent for PCDD/Fs (Long and Yang, 2001a) and NO_x (Long and Yang, 2001b). Very recent studies have claimed that introducing CNTs to alternative SCR catalyst can effectively enhance the low-temperature activity of several composite catalysts and facilitate the elimination of chlorobenzene (Fan et al., 2011; Nie et al., 2011) and NO_x (Li et al., 2011). This study investigates the catalytic performance of home-made V₂O₅/TiO₂-CNTs catalyst on gas-phase PCDD/Fs treatment for the first time. Besides, the effects of NO and NH₃ on PCDD/Fs catalytic destruction and adsorption are also studies. Moreover, reaction rate constant and apparent activation energy of OCDD and OCDF decomposition on V₂O₅/TiO₂-CNTs catalyst are calculated before and after NO and NH₃ addition.

2. Material and methods

2.1. Catalyst preparation and characterization

Purchased multi-walled carbon nanotubes (MWCNTs, purity > 95%, BOYU GAOKE Co., Beijing) with outer-diameter of 20–30 nm, a length of 10–30 μm and specific area of 154 m^2/g were used without further treatment. Previous study has investigated the thermogravimetric analysis of CNTs and found that the oxidation of CNTs occurs at 650 °C (Misra et al., 2006). The stability of CNTs within the temperature of 150–320 °C can be guaranteed as a consequence.

The V_2O_5/TiO_2 -CNTs catalyst was prepared using sol-gel method (Wang et al., 2016) and was then characterized using N₂-physisorption (automated Brunauer-Emmet-Teller (BET)) and pore

analyzer (TRISTAR 3020, Mike Instrument Co., USA): BET specific surface area 140 m²/g, total pore volume 0.25 cm³/g, and average pore diameter 5.9 nm. The X-ray diffraction (Philips Model XD-98) analysis indicates that the TiO₂ phase in V₂O₅/TiO₂-CNTs catalyst is anatase type, and VO_x is either in amorphous or microcrystalline form. The surface morphology of the CNTs-containing catalyst is demonstrated in Fig. 1. Our previous study (Lu et al., 2014) has revealed that VO_x connects to TiO₂ establishing V=O and V–O–Ti bonds which are closely related with the catalyst activity of the supported vanadia catalyst. In V₂O₅/TiO₂-CNTs catalyst, the formed VO_x/TiO₂ particles, independent VO_x or TiO₂ particles are preferred to insert into the surface vacancies of CNTs (Rodriguez-Manzo et al., 2010; Song and Jiang, 2012), which enables the well dispersion of active components due to the larger surface area of CNTs.

2.2. Reactivity measurement and analysis

The catalyst test system mainly relies on a stable dioxin generator (Yang et al., 2008), a catalytic reactor and a tail gas adsorption part (Fig. 2). The inlet concentration of PCDD/Fs in gas phase (PCDD/ Fsinlet) is detected as 12.2 ng TEQ/Nm³ (mean value of seven runs, with a standard deviation of 0.3). A gas mixture of 11 vol% O₂ and N₂ (balance) was used as carrier gas and the gas hourly space velocity is fixed at 20.000 h^{-1} . Before sampling, the test system maintains parameter stability for 60 min in advance. Then the effluent vaporphase PCDD/Fs of the reactor was continuously collected by XAD-2 resin for the second 60 min (PCDD/Fsoutlet). After each experimental run, the glass tube and the catalyst were then rinsed and Soxhlet extracted with toluene for the determination of residual PCDD/Fs on the surface of the catalyst and reactor (PCDD/Fson-catalyst). PCDD/ Fs pretreatment and analysis procedure were referred to that described by Wang et al. (2009). In our experiments, the surrogate recoveries range from 83% to 110% and meet the quality control of USEPA Method 23 (all surrogate recoveries shall be between 70% and 130%).

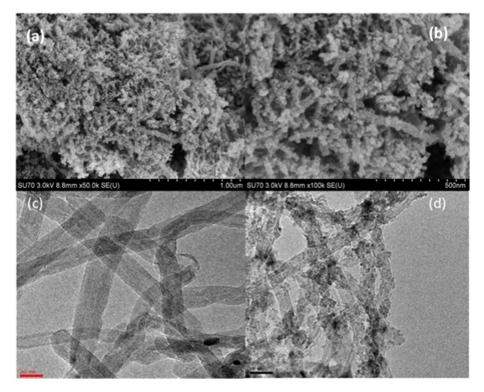


Fig. 1. SEM images of (a) (b) V₂O₅/TiO₂-CNTs catalyst; TEM images of (c) pure CNTs and (d) V₂O₅/TiO₂-CNTs catalyst.

Download English Version:

https://daneshyari.com/en/article/4407459

Download Persian Version:

https://daneshyari.com/article/4407459

Daneshyari.com