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h i g h l i g h t s

� Machine-learning applied to 1029 PARAFAC-modeled EEMs to classify 24 DOM sources.
� Classification accuracy: 97% river vs leachate; 93% leachate by species; 87% by river.
� Some machine learning algorithms achieved higher classification accuracies.
� Accuracy similar to NPLS-DA, but faster and with simultaneous multiclass comparison.
� Extending # components past cross-validated PARAFAC model improved accuracy.
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a b s t r a c t

Parallel factor (PARAFAC) analysis of dissolved organic matter (DOM) fluorescence has facilitated a surge
of investigation into its biogeochemical cycling. However, rigorous, PARAFAC-based methods for holis-
tically distinguishing DOM sources are lacking. This study classified 1029 PARAFAC-analyzed excitation-
emission matrices (EEMs) measured using DOM isolated from 24 different leaf leachates, rivers, and
organic matter standards using four machine learning methods (MLM). EEMs were also divided into
subsets to assess the impact of experimental treatments (i.e. whole EEMs, size fractionation, mixtures,
quenching) and dataset properties (i.e. different numbers of EEMs from each leachate/river) on classi-
fication. A split-half validated, 10-component PARAFAC model was extended to 12 components to remove
consistent peaks evident in model residuals. The 12-component model performed better than the 10-
component model, correctly classifying up to 80 additional EEMs, when the dataset included size-
fractionated DOM or several different sources (i.e. many leaf species and rivers); however, the 10-
component model performed better for whole-sample EEMs when comparing leaf leachates to rivers.
The MLM correctly classified whole EEMs of riverine DOM by source with up to 87.0% accuracy, leachates
with up to 92.5% accuracy, and distinguished leachates from rivers with 97.2% accuracy. A difference of up
to 17.3% in classification accuracy was observed depending on the MLM method used with the following
order: multilayer perceptron ¼ support vector machine > k-nearest neighbours [ decision tree;
however, performances differed widely depending on the data subset. Classification accuracy for whole
and size-fractionated rivers compared to whole and size-fractionated leachates using N-way partial
least-squares discriminant analysis (NPLS-DA; 97.7%) was similar to that achieved using MLM. Combining
MLM with PARAFAC is an effective method for classifying DOM based on its fluorescence signature
because PARAFAC can isolate meaningful fluorescent species and unlike PLSDA, MLM constructs a single
model which simultaneously classifies EEMs as belonging to one of several categories. A complete
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accounting of carbon flows through ecosystems should include the processes and sources that contribute
to the disparate fluorescence signatures of riverine and leached DOM.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Dissolved organic matter (DOM) is a complex and dynamic
mixture of molecules that arises from the death and exudation of
organisms, and their subsequent decomposition. DOM plays
various roles in natural and engineered ecosystems, including:
serving as either a source or sink for carbon, through decomposi-
tion to produce carbon dioxide or methane, or sequestration in soils
and sediments (Kalbitz and Kaiser, 2008; Jiao and Zheng, 2011;
Lorenz, 2013); serving as a source of energy, nutrients, and pro-
tection from harmful UV light for microorganisms (Williamson
et al., 2001; Zepp et al., 2007; Sleighter et al., 2014); binding with
heavy metals and pollutants, thereby controlling their mobility and
toxicity (Gu�eguen and Dominik, 2003; Aiken et al., 2011); forming
carcinogenic disinfection byproducts by binding with chlorine
during the disinfection of drinking water (Villanueva et al., 2004;
Beggs and Summers, 2011). In these roles the effectiveness of
DOM depends upon its composition and structure; however, these
qualities are highly dynamic. Thus, cost effective and efficient
methods for the frequent characterization of DOM are necessary to
measure its changes.

Excitation-emission matrix (EEM) fluorescence spectroscopy is
a rapid and cost-effectivemethod for characterizing DOM. EEMs are
generated by aligning the scans of multiple emission (Em) wave-
lengths, each measured at a different excitation (Ex) wavelength
(Coble, 1996). Typically, each EEM contains thousands to tens of
thousands of Ex/Em pairs, many of which are highly correlated.
DOM fluorescence appears as correlated sets of Ex/Em pairs (or
'peaks') because it arises from a combination of individual mole-
cules and both intra- and inter-molecular interactions (Lakowicz,
2006; Aiken, 2014; Sharpless and Blough, 2014). Thus, it is an in-
dicator of both composition and structure.

Despite the overlap of fluorescent species in DOM EEMs, parallel
factor (PARAFAC) analysis has proven successful for resolving EEMs
into independent components that have shown a high degree of
similarity across multiple studies (Stedmon et al., 2003; Ishii and
Boyer, 2012; Murphy et al., 2014a; Parr et al., 2014). In addition to
reducing the high dimensionality of EEMs (typically from thou-
sands of Ex/Em pairs to < 10 components), PARAFAC has been used
to distinguish DOM from the leachates of leaves from different tree
species, from different rivers, and from different marine environ-
ments (Stedmon and Markager, 2005a; Jørgensen et al., 2010;
Murphy et al., 2008; Cuss and Gu�eguen, 2013), and for tracing
DOM isolated from different sources through ecosystems and
biogeochemical processes (Stedmon and Markager, 2005b; Larsen
et al., 2010; Osburn et al., 2012; Chen and Jaff�e, 2014). The PAR-
AFAC analysis of fluorescence has also been used to connect DOM to
its effectiveness as a source of nutrients for microorganisms (Cuss
and Gu�eguen, 2012a, 2015a), a binder of heavy metals (Yamashita
and Jaff�e, 2008; Chen et al., 2013; Cuss and Gu�eguen, 2014), and a
precursor for disinfection byproducts (Beggs and Summers, 2011;
Lyon et al., 2014). Thus, the discrimination of DOM isolated from
different sources using fluorescence (e.g. Chen et al., 2010) enables
the refined tracing of its biogeochemical dynamics, and can facili-
tate the identification of relative contributions in waters that
contain DOM arising from multiple sources (Fellman et al., 2010),
and in estuarine mixing (Stedmon and Markager, 2005a; Huguet

et al., 2007). However, linking the contributions of DOM from
different sources to the behaviour of DOM mixtures requires both
the accurate distinction of the endmembers and the extraction of
spectra that represent different fluorescent species. While mixing
models have been applied to PARAFAC-modeled EEMs for esti-
mating proportional contributions during the mixing of several
endmembers (e.g. Larsen et al., 2015), source discrimination is
useful for detecting the dominant contributor, or for determining
the location of origin for a water sample. This type of pure end-
member distinction has proven useful for distinguishing fresh and
marine waters to test whether ballast water exchange has been
completed using PARAFAC with N-way partial-least squares
discriminant analysis (NPLS-DA) (Hall et al., 2005), and the in-
tensity of fluorescence at two excitation-emissionwavelength pairs
(Murphy et al., 2006). Hence, distinguishing between pure end-
members can be useful in forensic applications that seek to
distinguish between sourcewaters.

The discrimination of DOM from different sources using its
fluorescence signature has been qualitatively achieved by
comparing the relative levels of individual PARAFAC components
(Stedmon et al., 2003; Carstea et al., 2014), by using ratios or in-
dicators (Gabor et al., 2014; Huang et al., 2015), and by combining
PARAFAC with multivariate analyses (e.g. principal component
analysis; Cuss and Gu�eguen, 2013; Chen and Jaff�e, 2014; Kothawala
et al., 2014); however, there are a lack of methods for the quanti-
tative estimation of differences that use the entire fluorescence
signature (i.e. all PARAFAC components). Descriptions of the degree
to which mixtures can be distinguished based on fluorescence
composition, and of the degree of difference between endmembers
and mixtures, also remain qualitative.

PARAFAC deconvolutes the fluorescence signatures of underly-
ing fluorophores and thereby describe meaningful fluorescent
species, whereas the components produced by NPLS-DA (Wittrup,
2000; Hall et al., 2005; Murphy et al., 2014b) and self-organizing
maps with backpropagation artificial neural networks (SOM-
BPNN; Bieroza et al., 2012) are not chemically meaningful. Thus,
applying machine learning methods to classify DOM according to
source using their PARAFAC-based signatures effectively combines
the discriminatory power of methods like NPLS-DA and SOM-BPNN
with the description of meaningful spectra achieved by PARAFAC.
NPLS is also limited to binary comparisons in each model so that
multiple analyses are required to group samples by source if more
than two sources exist, and the classification of a sample as
belonging to more than one source or no source is also possible
(Hall et al., 2005). On the other hand, the machine learning
methods used in this study are capable of simultaneous multi-
source comparison, which saves valuable computation time and
classifies samples as belonging to a single source.

In this study, 1073 EEMs were generated by measuring DOM
from 24 different leaf leachates and rivers under similar physico-
chemical conditions, and decomposed using PARAFAC models with
10 and 12 components. For the first time, the resulting fluorescence
compositions were classified by leachate/river using four estab-
lished machine learning methods to quantify differentiability. The
classification accuracy achieved by applying different machine
learning methods and PARAFAC models were compared both with
each other and NPLS-DA, and differences were related to the
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