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h i g h l i g h t s

� Three linear and nonlinear methods were used to study bioconcentration factors for pesticides.
� Applicability domain was analyzed, and outliers were determined.
� Comparison with reported model, new models is simpler.
� Relative significance of the descriptors to each model was studied.
� Selected descriptors were served as molecular information to study bioconcentration factors.
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a b s t r a c t

This work is devoted to the applications of the multiple linear regression (MLR), multilayer perceptron
neural network (MLP NN) and projection pursuit regression (PPR) to quantitative structureeproperty
relationship analysis of bioconcentration factors (BCFs) of pesticides tested on Bluegill (Lepomis macro-
chirus). Molecular descriptors of a total of 107 pesticides were calculated with the DRAGON Software and
selected by inverse enhanced replacement method. Based on the selected DRAGON descriptors, a linear
model was built by MLR, nonlinear models were developed using MLP NN and PPR. The robustness of the
obtained models was assessed by cross-validation and external validation using test set. Outliers were
also examined and deleted to improve predictive power. Comparative results revealed that PPR achieved
the most accurate predictions. This study offers useful models and information for BCF prediction, risk
assessment, and pesticide formulation.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Bioconcentration factor (BCF) is the equilibrium ratio of the
concentration of a substance in an exposed organism to the con-
centration of a dissolved substance bioavailable in the surrounding
aquatic environment (Mackay and Fraser, 2000). The European
regulation on classification, labeling, and packaging requires the
establishment of BCFs for all compounds to regulate chemical

substances (European Commission Environment Directorate
General, 2007). For fish, BCF value facilitates the estimation of
pesticide daily intake by the daily consumption of fish and by
establishing safe limits for water pesticide concentration. Pesticides
are used in agricultural treatments to improve crop yields (Cooper
and Dobson, 2007). Nevertheless, the use of pesticides should be
controlled because an important fraction of pesticides are released
into the environment, which presents a potential hazard (Mnif
et al., 2011; Landrigan et al., 1999). Therefore, investigating BCFs
of pesticides is important.

However, experimental determination of BCF is expensive and
time-consuming. Thus, a few estimation methods have been
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reported. Several studies have reported on the linear correlation
between BCF values and n-octanol/water partition coefficient (log
Kow) (Devillers et al., 1996; Mackay, 1982; Garg and Smith, 2014).
Dimitrov et al. (2002) proposed a nonlinear model for the log BCF/
log Kow relationship based on a large set of narcotic compounds to
analysis the specific role of the internal water phase on the for-
mation of the body bioconcentration. Gissi et al. (2013) integrated
themost used CAESAR andMeylanmodels for predicting BCF of 851
compounds from the ANTARES BCF dataset to demonstrate inte-
grated model with more reliability of the predictions. Moreover, a
chromatographic retention factor (Bermúdez-Salda~na et al., 2005)
and an artificial membrane accumulation index (Fujikawa et al.,
2009) have been reported. Piir et al. (2010) summarized some
modeling techniques that use different compounds and algorithms.
However, only one study (Jackson et al., 2009) predicted the BCF of
pesticides using log Kow and E-state descriptors. We propose here
three alternative models for predicting BCFs of pesticides and
providing useful information for risk assessment and pesticide
research.

Selecting a combination of variables that produce the best result
for QSAR study is also one of the most important problems. Feature
selection methods such as simulated annealing, genetic algorithm,
replacement method (RM), enhanced replacement method (ERM),
and many more are used (Gonz�aleza et al., 2008). Among these
techniques, a modified ERM, inverse enhanced replacement
method (IERM), is simple and of low computational cost (Morales
et al., 2006). Thus, IERM was employed to select the best
DRAGON descriptors for QSAR models. Multiple linear regression
(MLR), multilayer perceptron neural network (MLP NN) and pro-
jection pursuit regression (PPR) have attracted attention and have
been extensively applied (Torrecilla et al., 2009; Goodarzi et al.,
2010; Parinet et al., 2015; Yan et al., 2015; Du et al., 2008). There-
fore, MLR, MLP NN and PPR were also employed in this paper.

This study was performed to develop linear and nonlinear QSAR
models for predicting the log BCF of pesticides. The presented QSAR
models were validated using a test set and the proposed parame-
ters by Tropsha (2010). The performances of the different models
were compared. In addition, the descriptors used in the QSAR
models were used to identify molecular characters related to the
log BCF of pesticides.

2. Materials and methods

2.1. Data set

Molecular structures and activities of pesticides were derived
from Jackson et al. (2009). One duplicate compound and a salt (the
neutral form of this salt could not be optimized by the SYBYL
program)were removed. A total of 107 pesticides were evaluated in
this study. BCF values weremeasured on the same Bluegill (Lepomis
macrochirus) following a standardized protocol (US EPA, 1996). BCF
values are presented as log values in Table S1 (Table S1 in the
Supplementary material). The modeled log BCF ranged from �0.92
to 4.00. The compoundswere divided into training (n¼ 80) and test
(n ¼ 27) sets using DUPLEX algorithm (Snee, 1977; Puzyn et al.,
2011), which allows maintenance of a comparable diversity in
both sets; the latter are therefore similar in terms of representa-
tiveness (for more details, see the Supplementary material and
elsewhere (Snee, 1977; Ritota et al., 2010)). The training set was
used to build models, and the independent test set was used to
evaluate the predictive ability of the models.

2.2. DRAGON descriptors

The three-dimensional structures of 107 pesticides were

constructed using Sybyl-x 1.3. The energy of each molecule was
minimized using gradient descent method and by employing
Tripos force field and GasteigereHuckel charges. The molecular
descriptors were obtained by encoding the optimized molecular
structures into the DRAGON program, and 4885 different types of
molecular descriptors were calculated to describe the structural
diversity of the chemicals. Then, the initial pool of descriptors was
reduced by applying the DRAGON built-in variable exclusion pro-
cedure. Three types of descriptors were excluded, namely, constant
(relative standard deviation < 0.001), near-constant (all values are
equal except one), and highly correlated descriptors. For each pair
of highly correlated descriptors, R > 0.9, the descriptor with the
largest mean correlation coefficient with the rest of the descriptors
is removed. Thus, 1230 molecular descriptors were maintained.

2.3. Variable selection

We used IERM to select the best subset of DRAGON descriptors.
The RM and ERM determined the optimal subset of d (d ≪ D) de-
scriptors from a large group of D descriptors with a minimum
standard deviation (S) (Mercader et al., 2010, 2011). By contrast,
IERM uses an initial set of very high S determined by an “inverse
RM” (RM was used to maximize S), as follows:

S ¼ 1
ðN � d� 1Þ

XN

i¼1

res2i (1)

In Eq. (1), N is the number of molecules in the training set, and
resi represents the residual for molecule i. The residual is the dif-
ference between experimental and predicted properties. S(dn) is a
distribution in a space of D!/[d!(D� d)!] points. Full search (FS) can
arrive at the global minimum by calculating S(dn) for all space
points, but FS is too difficult to perform if D is very large. However,
IERM is more efficient than FS in reaching the global minimum. The
two-step IERM was performed as follows. First, an initial set of
descriptors, dk, was chosen by an inverse RM. One of the de-
scriptors, Xki, was replaced iteratively by each remaining D � d
descriptor, and the set with the smallest value of S was retained.
Second, from the resulting set, the descriptor with the greatest
value of S in its coefficient was chosen and replaced using all de-
scriptors, except the one replaced in the previous iteration. This
step was repeated until the set remained unchanged. IERM variable
selection was implemented in MATLAB.

2.4. MLP NN

MLP NN, which is a supervised neural network, was used to
investigate the nonlinear relationship among the selected molec-
ular descriptors and log BCF of pesticides. This network generally
consists of several artificial neurons arranged in three layers (to-
pology of NN), namely, input, hidden, and output layers. The three-
layer topology with a single hidden layer is sufficient for solving
similar or more complex problems (Torrecilla et al., 2009). Thus,
three-layer MLP was used in this work. The descriptors of the MLR
model were used as inputs for the network. The Broydene-
FletchereGoldfarbeShanno learning algorithm was used to
develop MLP NN models. Different networks with 4e12 neurons in
the hidden layer were trained to determine the optimal number of
neurons in the hidden layer. Overfitting was avoided by repeating
the learning process and verifying the sum-of-squares error. The
sum-of-squares error is simply given by the sum of differences
between the target and prediction outputs defined over the entire
training set. The calculation process in each neuron in the hidden
and output layers is performed by successive activation and
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