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h i g h l i g h t s

� The discrete state space correlation among parameters in anaerobic reactor.
� The relation is updated at every time point, giving it an adaptive feature.
� The proposed algorithm to estimate methane generation from industrial waste.
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a b s t r a c t

In this paper, a linear state space model for the two-phase anaerobic reactor system was developed based
on historical data. Subsequently, the model was used to predict its future behavior. The state space model
developed involved correlation analysis and model development. The model would be updated at every
time point when a new data set became available, giving it an ‘‘adaptive’’ feature. The model was then
applied to monitor two-phase anaerobic co-digestion of a feed comprising 2 industrial secondary sludges
and 2 industrial wastewaters. The case study showed the proposed model was able to provide good pre-
dictions of various process parameters. In addition, it also predicted impending process failure and this
would have allowed the operator to take necessary measures to prevent or reduce impact of such failure
during plant operation.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The anaerobic process converts organic carbon into methane
gas and is attractive as it has the potential to address two main
issues simultaneously, organic wastes treatment and energy recov-
ery via the biogas generated. Various types of organic wastes, such
as industrial and municipal wastes, livestock manure, and food
wastes, can be utilized as organic carbon sources (Gunaseelan,
1997; Van Starkenburg, 1997; Molino et al., 2012).

The anaerobic process can be divided into two parts: acidogen-
esis, which converts complex organic substrates into acetic acid,
mediated by the Eubacteria consortium, and methanogenesis,

which generates methane gas from acetic acid or from carbon
dioxide and hydrogen by the methanogens (Gujer and Zehnder,
1983). Acidogenesis and methanogenesis can be performed either
in a single reactor or in separate reactors. They are usually referred
to then as the single stage and two-phase anaerobic process,
respectively. As compared to the single stage process, the two-
phase anaerobic process allows optimization of each individual
process with the intention to increase conversion (Azbar and
Speece, 2001). Moreover, as later shown in this work, the first
phase can act as an early warning of a failing process.

In order to gain better understanding and control of the anaer-
obic process, mathematical models of the anaerobic reaction have
been developed. These models were typically developed from
empirical equations involving several constants. These constants
were subsequently sought using experimental data and statistical
analysis. One of the most commonly used empirical model is
anaerobic digestion model number 1 (ADM1) (Batstone et al.,
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2002). A MATLAB/Simulink code of this model, which can simulate
the concentration of various substrates and biomass over time, had
been previously developed (Rosen et al., 2006). Simpler mass bal-
ance models assumes all VFAs are directly converted into methane
gas (Bello-Mendoza and Sharratt, 1998) or using state variables
which later can be used to facilitate control system design of an
anaerobic digester (Bernard et al., 2001; Sbarciog et al., 2011).
However, the anaerobic process is sensitive to variation in process
operating conditions (Fripiat et al., 1984; Simeonov and Diop,
2010) such as variations in organic load (Skogestad and
Poslethwaite, 2005) which makes its stable operation difficult.

Other anaerobic reaction models were derived from past
experimental data through statistical or regression analysis.
Typically, these aim at estimating a particular parameter given a
set of historical observed data. Such approach had been used to
estimate biogas volume (Govatsmark and Skogestad, 2005), meth-
ane production rate (Schievano et al., 2012), sludge volume index
(Ng et al., 2000) and effluent solids, and residual chemical oxygen
demand (Avella et al., 2011). Another approach includes imple-
mentation of artificial neural network structures to predict various
parameters within the anaerobic process, see e.g. (Ozkaya et al.,
2007; Qdais et al., 2010). In addition, instead of looking at the cur-
rent value of parameters, some models were developed based on
rate of change, which gives them predictive ability, (Azbar and
Speece, 2001; Sbarciog et al., 2011). Recently, an extensive review
on modeling of the anaerobic process was done (Donoso-Bravo
et al., 2011) which informed on the various stepwise model devel-
opments available in the literature.

In this work, an ‘‘adaptive’’ discrete state space model for the
anaerobic process is developed. This model is a modification of sta-
tistical based method, where historical data are used to estimate
future behavior of anaerobic process. The main difference between
the proposed model and conventional statistical based model is
that in the proposed model coefficient and shape are updated at
every time step, which provides its adaptive ability in the presence
of changing condition. Instead of data fitting, the model aims to
estimate future values of various parameters. The adaptive feature
comes from the continuous update of model parameters, as
experimental data used to develop the model shifted over time.
A continuous update enabled the model to keep pace with recent
changes in process behavior as well as changing input conditions
which would occur in real life situations. The main advantage of
the proposed model is that it is updated continuously with time,
to account for changing operational condition. As compared to
other model, such as ADM1, which have same model over time,
the proposed model keeps on self-updating over time, such that
it would not have same model at present and in future. Other
advantages of the proposed model as compared to mathematical
models are:

i. ADM1 and most models require assumptions, as not all
parameters are measurable. Our model parameters are all
measurable, and can be chosen. We have the option to use
or not use the parameter, if it is not measurable or difficult
to measure, we do not use it. The flexibility is not in other
models, when all parameters have to be there.

ii. Unlike ADM1, it is designed specifically for a particular pro-
cess, where ADM1 and others were generic.

Model development was made in two steps. In the first step, the
parameters available for consideration were screened and
analyzed based on their respective importance to the anaerobic
process. In the second step, the parameters were used as state
variables to estimate the behavior of various parameters in the
anaerobic process. Subsequently, the model was verified by imple-
menting it in a two-phase anaerobic reaction process.

A benefit of discrete state space model implementation is its
predictive capability. Based on past data, the model provides one
step prediction of the future state. As described in Section 2.2, by
doing recursive calculation on the model, it can predict future
states, given the inputs are known where the adaptive feature is
still maintained.

2. Model development

A discrete state space model between outputs y, inputs u, and
states x can be written as:1

xðt þ 1Þ ¼ A xðtÞ þ B uðtÞ ð1Þ
yðtÞ ¼ C xðtÞ þ D uðtÞ ð2Þ

The step by step procedures for model development are indi-
cated below

2.1. Parameter screening and selection

The model was built for the two-phase anaerobic process.
Model development for single stage anaerobic process can be car-
ried out in similar fashion by ignoring all parameters in the second
reactor. Based on the biochemical reaction in each reactor, the first
and second reactors are referred as acidogenic reactor and metha-
nogenic reactor, respectively. All recorded parameters during the
experiment are considered to be state or output candidates, while
all manipulated parameters are considered to be input candidates.
These parameters are listed in Table 1.

Nomenclature

SCOD soluble chemical oxygen demand
TCOD total chemical oxygen demand
VFA volatile fatty acid
TDS total dissolved solids
TOC total organic carbon
TS total solids
TSS total suspended solids
VSS volatile suspended solids
TN total nitrogen
CH4 methane flow rate

I influent
AR acidogenic reactor
MR methanogenic reactor
R Pearson’s correlation coefficients
N number of candidate state variables
u input variable
x state variable
y output variable

1 Notations: Throughout this paper, a bold capital letter indicates an nxn matrix, a
bold small letter indicates an nx1 vector, a number or symbol t in brackets indicates
time, AT denotes transpose of A, and A�1 indicates inverse of A.
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