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develop optimal assembly algorithms for the finite element system matrices. Numerical 
experiments confirm the effectiveness of the method.
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1. Introduction

Spaces of multivariate piecewise polynomial splines are usually defined on triangulated polyhedral domains without 
imposing any boundary conditions. However, applications such as the finite element method require at least the ability 
to prescribe zero values on parts of the boundary. Fitting data with curved discontinuities of the derivatives is another 
situation where the interpolation of prescribed values along a lower dimensional manifold is highly desirable. It turns 
out that such conditions make the otherwise well understood spaces of e.g. bivariate C1 macro-elements on triangulations 
significantly more complex. Even in the simplest case of a polygonal domain, the dimension of the space of splines vanishing 
on the boundary is dependent on its geometry, with consequences for the construction of stable bases (or stable minimal 
determining sets) (Davydov and Saeed, 2012, 2013).

Since splines are piecewise polynomials, it is convenient to model curved features by piecewise algebraic surfaces so 
that the spline space naturally splits out the subspace of functions vanishing on such a surface. Indeed, implicit algebraic 
surfaces are a well-established modeling tool in CAGD (Bloomenthal et al., 1997), and the ability to exactly reproduce some 
of them (e.g. circles or cylinders) is a highly desirable feature for any modeling method (Farin, 2002).

On the other hand, the finite element analysis benefits a lot from the isogeometric approach (Hughes et al., 2005), where 
the geometric models of the boundary are used exactly in the form they exist in a CAD system rather than undergoing 
a remeshing to fit into the traditional isoparametric finite element scheme. While the isogeometric analysis introduced 
in Hughes et al. (2005) is based on the most widespread modeling tool of NURBS and benefits from the many attractive 
features of tensor-product B-splines, it also inherits some of their drawbacks, such as complicated local refinement (see for 
example Buffa et al., 2010).

In this paper we explore an isogeometric method which combines modeling with algebraic curves with the standard 
triangular piecewise polynomial finite elements in the simplest case of planar domains defined by piecewise quadratic alge-
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braic curves (conic sections). Remarkably, the standard Bernstein–Bézier techniques for dealing with piecewise polynomials 
on triangulations (Lai and Schumaker, 2007; Schumaker, 2015) as well as recent optimal assembly algorithms (Ainsworth et 
al., 2011, 2015a, 2015b) for high order elements can be carried over to this case without significant loss of efficiency. Some 
of the material, especially in Sections 4 and 6 is based on the thesis (Saeed, 2012) of one of the authors. Note that we only 
consider C0 elements for elliptic problems with homogeneous Dirichlet boundary conditions, although preliminary results 
on a direct implementation of non-homogeneous Dirichlet boundary conditions can be found in Saeed (2012).

In contrast to both the isoparametric curved finite elements and the isogeometric analysis, our approach does not require 
parametric patching on curved subtriangles, and therefore does not depend on the invertibility of the Jacobian matrices of 
the nonlinear geometry mappings. Therefore our finite elements remain piecewise polynomial everywhere in the physical 
domain. This in particular facilitates a relatively straightforward extension to C1 elements on piecewise conic domains, 
which have also been considered in Saeed (2012) and tested numerically on the approximate solution of fully nonlinear 
elliptic equations by Böhmer’s method (Böhmer, 2008). Full details of the theory of these elements are postponed to our 
forthcoming paper (Davydov and Saeed, in preparation).

There are some connections to the weighted extended B-spline (web-spline) method (Höllig et al., 2001). In particular, in 
our error analysis we use a technical lemma (Lemma 3.1) proved in Höllig et al. (2001). Indeed, the quadratic polynomials 
that define the curved edges of the pie-shaped triangles at the domain boundary are factored out from the local polynomial 
spaces and hence act as weight functions on certain subdomains. They remain however integral parts of the spline spaces 
in our case and are generated naturally from the conic sections defining the domain, thus bypassing the problem of the 
computation of a smooth global weight function needed in the web-spline method.

The paper is organized as follows. We introduce in Section 2 the spaces Sd,0(�) of C0 piecewise polynomials of degree 
d on domains bounded by a number of conic sections, with homogeneous boundary conditions and investigate in Section 3
their approximation power for functions in Sobolev spaces Hm(�) vanishing on the boundary, which leads in particular to 
the error bounds in the form O(hm) in the L2-norm and O(hm−1) in the H1-norm for the solutions of elliptic problems by 
the Ritz–Galerkin finite element method. Section 4 is devoted to the development of a basis for Sd,0(�) of Bernstein–Bézier 
type important for a numerically stable and efficient implementation of the method. Some implementation issues specific 
for the curved elements are treated in Section 5, including the fast assembly of the system matrices. Finally, Section 6
presents several numerical experiments involving the Poisson problem on two different curved domains, as well as the 
circular membrane eigenvalue problem. The results confirm the effectiveness of our method both in h- and p-refinement 
settings.

2. Piecewise polynomials on piecewise conic domains

Let � ⊂ R
2 be a bounded curvilinear polygonal domain with � = ∂� = ⋃n

j=1 � j , where each � j is an open arc of an 
algebraic curve of at most second order (i.e., either a straight line or a conic). For simplicity we assume that � is simply 
connected. Let Z = {z1, . . . , zn} be the set of the endpoints of all arcs numbered counter-clockwise such that z j , z j+1 are the 
endpoints of � j , j = 1, . . . , n. (We set z j+n = z j .) Furthermore, for each j we denote by ω j the internal angle between the 
tangents τ+

j and τ−
j to � j and � j−1, respectively, at z j . We assume that 0 < ω j ≤ 2π , and set ω := min{ω j : 1 ≤ j ≤ n}.

Our goal is to develop an H1-conforming finite element method with polynomial shape functions suitable for solving 
second order elliptic problems on curvilinear polygons of the above type.

Let � be a triangulation of �, i.e., a subdivision of � into triangles, where each triangle T ∈ � has at most one edge 
replaced with a curved segment of the boundary ∂�, and the intersection of any pair of the triangles is either a common 
vertex or a common (straight) edge if it is non-empty. The triangles with a curved edge are said to be pie-shaped. Any 
triangle T ∈ � that shares at least one edge with a pie-shaped triangle is called a buffer triangle, and the remaining triangles 
are ordinary. We denote by �0, �B and �P the sets of all ordinary, buffer and pie-shaped triangles of �, respectively. Thus,

� = �0 ∪ �B ∪ �P

is a disjoint union, see Fig. 1. We emphasize that a triangle with only straight edges on the boundary of � does not belong 
to �P .

We denote by Pd the space of all bivariate polynomials of total degree at most d. For each j = 1, . . . , n, let q j ∈ P2 be a 
polynomial such that � j ⊂ {x ∈ R

2 : q j(x) = 0}. By multiplying q j by −1 if needed, we ensure that ∂νx q j(x) < 0 for all x in 
the interior of � j , where νx denotes the unit outer normal to the boundary at x, and ∂a := a · ∇ is the directional derivative 
with respect to a vector a. Hence, q j(x) is positive for points in � near the boundary segment � j . We assume that q j ∈ P1
or q j ∈ P2 \ P1 depending on whether � j is a straight interval or a genuine conic arc.

Furthermore, let V , E , V I , E I , V B and E B denote the set of all vertices, all edges, interior vertices, interior edges, 
boundary vertices and boundary edges of �, respectively. For each v ∈ V , star(v) stands for the union of all triangles in �
attached to v . We also denote by θ the smallest angle of the triangles T ∈ �, where the angle between an interior edge and 
a boundary segment is understood in the tangential sense.
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