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Let �n be a cell with a single interior vertex and n boundary vertices v1, . . . , vn . Say that 
�n has the interpolation property if for every z1, . . . , zn ∈ R there is a spline s ∈ S1

2 (�n)

such that s(vi) = zi for all i. We investigate under what conditions does a cell fail the 
interpolation property. The question is related to an open problem posed by Alfeld, Piper, 
and Schumaker in 1987 about characterization of unconfinable vertices.
For hexagonal cells, we obtain a geometric criterion characterizing the failure of the 
interpolation property. As a corollary, we conclude that a hexagonal cell such that its six 
interior edges lie on three lines fails the interpolation property if and only if the cell is 
projectively equivalent to a regular hexagonal cell. Along the way, we obtain an explicit 
basis for the vector space S1

2 (�n) for n ≥ 5.
© 2016 Elsevier B.V. All rights reserved.

0. Introduction

Suppose that A is a finite set of points in R2. The condition that a polynomial of a fixed degree vanishes on A can be 
expressed as a system of linear equations in the coefficients of the polynomial. A classically studied problem asks under 
what conditions on A are these equations linearly independent. One example of a (classical) answer to that question appears 
in Fact 2.3. We consider a version of this problem, replacing polynomial functions with splines.

Definition 0.1. Let �6 be a triangulation with one interior vertex v∗ and six boundary vertices v1, . . . , v6. We say that �6
has the interpolation property if for every z1, . . . , z6 ∈R there is s ∈ S1

2 (�6) such that s(vi) = zi for i = 1, . . . , 6.

We want to know when a cell �6 has the interpolation property. This problem is related to the one posed by Alfeld, 
Piper, and Schumaker in Alfeld et al. (1987). They ask under what conditions do all the vertices of a cell �n , including 
the interior vertex, fail to impose independent conditions on S1

2 (�n) (in the terminology of Alfeld et al. (1987), the inte-
rior vertex of �n is unconfinable). It is clear that if �n fails the interpolation property, then the interior vertex of �n is 
unconfinable; but we do not know whether the converse is true.

It was shown in Alfeld et al. (1987) that if the interior vertex of �n is unconfinable, then n ≥ 6 and n is even. For n = 6, 
Alfeld et al. (1987) show that if �6 is the triangulation of a regular (up to an affine transformation) hexagon such that 
its 6 interior edges lie on 3 lines, then �6 fails the interpolation property (and thus is unconfinable). But it was not clear, 
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for instance, whether this is the only example of a hexagonal cell with an unconfinable interior vertex. The problem was 
mentioned again in Alfeld (2000).

We show in Corollary 2.8 that if �6 is a triangulation such that all of its interior edges lie on three lines, then �6 fails 
the interpolation property if and only if the hexagon is regular up to a projective transformation. We obtain the corollary as 
a consequence of a more general characterization in Theorem 2.2. Both the corollary and the theorem allow us to describe 
new classes of hexagonal cells with an unconfinable interior vertex. It is worth noting that the characterization of the 
interpolation property we find has a distinct geometric flavor; this was also the case in the study of interpolation properties 
of linear splines (see Davydov et al., 2000, and references therein).

A key tool in the analysis is a convenient explicit basis for the vector space S1
2 (�n), n ≥ 5, obtained in Proposition 1.1. 

This is the content of Section 1. The rest of the paper is organized as follows. Section 2 contains the statements of the main 
results: Theorem 2.2 and Corollary 2.8. The proof of Theorem 2.2 is also in Section 2, modulo the proofs of two lemmas. We 
chose to separate the proofs of the two technical lemmas to Section 3 to make the structure of the main argument more 
transparent. Corollary 2.8 is proved in Section 4.

1. Explicit basis for C 1 quadratic splines on a cell

Let �n be a cell with the interior vertex v∗ = (0, 0). Given a counterclockwise sequential labeling {vi | 1 ≤ i ≤ n} of the 
boundary vertices of �n , we will denote, for i = 1, . . . , n, by τi the edge containing v∗ and vi and by σi the triangle with 
vertices v∗ , vi , and vi+1. We will use the convention that the index arithmetic is the arithmetic modulo n (so, for example, 
vn = v0, vn+1 = v1, and so on).

Let �i be a linear form such that the line �i(x, y) = 0 contains the edge τi . We will take the gradient of �i to be the unit 
vector in the direction 〈−yi, xi〉, where (xi, yi) are the coordinates of vi . Let θi, j , 1 ≤ i < j ≤ n denote the angle between 
the edges τi and τ j (or, equivalently, the angle between the gradients of �i and � j ).

The symbol d(v j, �i) will denote the (oriented) distance from the vertex v j to the line �i = 0. Given the convention that 
the gradient of �i is a unit vector, d(v j, �i) is simply the value �i(v j); we use the notation d(v j, �i) to highlight that we are 
thinking of the quantity as the distance.

The following proposition is the main result of this section.

Proposition 1.1. Let �n be a cell, n ≥ 5. There is a sequential counterclockwise labeling of the boundary vertices vi , i = 1, . . . , n, and 
a family {si | si ∈ S1

2 (�n), i = 1, . . . , n − 3} such that

1. for each i = 1, . . . , n − 3, the support of si is contained in the set σi ∪ σi+1 ∪ σi+2 and si(vi+1) · si(vi+2) 	= 0;
2. for each i = 1, . . . , n − 3, we have

si(vi+1)

si(vi+2)
= d(vi+1, �i) · d(vi+1, �i+3)

d(vi+2, �i) · d(vi+2, �i+3)
;

3. the set of functions B = {1, x, y, x2, xy, y2, s1, . . . , sn−3} is a basis for S1
2 (�n).

Definition 1.2. A spline si that satisfies (1) and (2) of Proposition 1.1 will be called a basic spline.

The proof will consist of two parts: we first establish the existence of a single basic spline under a technical assumption 
about the angles between certain edges (Lemma 1.4). We then show in Lemma 1.5 that one can always label the boundary 
vertices so that the technical assumption is satisfied for sufficiently many edges.

For Lemma 1.4, we will need the following identity.

Fact 1.3. Let ai, bi ∈ R for i ∈ {1, 2, 3}. Then∣∣∣∣∣∣
a2

1 a2
2 a2

3
a1b1 a2b2 a3b3

b2
1 b2

2 b2
3
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The equality can be either verified directly, or obtained using Vandermonde determinant formula, so we omit the proof.

Lemma 1.4. Fix i ∈ {1, 2, . . . , n − 3}. Suppose that the angles θi,i+2 and θi+1,i+3 are both acute. Then:

(I) There is a non-zero vector (ki,0, . . . , ki,3), unique up to a constant multiple, such that for all (x, y) ∈R
2

3∑
j=0

ki, j�
2
i+ j(x, y) = 0. (1)
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