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It is known that one can improve the accuracy of the finite element solution of partial 
differential equations (PDE) by uniformly refining a triangulation. Similarly, one can 
uniformly refine a quadrangulation. Recently polygonal meshes have been used for 
numerical solution of partial differential equations based on virtual element methods, 
weak Galerkin methods, and polygonal spline methods. A refinement scheme of pentagonal 
partition was introduced in Floater and Lai (2016). It is natural to ask if one can create a 
hexagonal refinement or general polygonal refinement schemes. In this short article, we 
show that one cannot refine a convex hexagon using convex hexagons of smaller size. In 
general, we show that one can only refine a convex n-gon by convex n-gons of smaller size 
if n ≤ 5.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the fields of computer aided geometry design of surfaces and numerical solutions of partial differential equations 
(PDE), triangulations have been the traditional way of partitioning spatial domains. Due to the recent development of the 
virtual element methods, weak Galerkin methods, and polygonal splines (see Beirao da Veiga et al., 2011, 2013; Manzini 
et al., 2014; Rand et al., 2014; Wang and Wang, 2014; Floater and Lai, 2016), one is able to use an arbitrary polygonal 
partition for numerical solutions of PDE. In addition, generalized barycentric coordinates (GBC) over arbitrary polygons of n
sides, n-gon for short, were invented for surface applications. See a recent survey in Floater (2015). An excellent polygonal 
mesh generator can be found in Talischi et al. (2012). It is known that we can uniformly refine a triangulation and a 
quadrangulation (cf. Lai and Schumaker, 2007) which is a common strategy to demonstrate the accuracy as well as the 
convergence of a numerical algorithm for solving a PDE. Recall the standard theory of spline approximation (cf. e.g. Lai and 
Schumaker, 2007) and the finite element method (cf. e.g. Brenner and Scott, 1994), i.e., the h-version and hp-version of finite 
element method requires the size of a underlying partition go to zero. It is important to have a scheme to generate partitions 
with finer sizes. Refining an existing partition to a partition of the same type with smaller size is an obvious approach 
which can be conveniently applied repeatedly to reduce the size of underlying partition. In addition, for polynomial finite 
elements or bivariate splines (cf. Awanou et al., 2005), the uniform refinement of triangulations/quadrangulations enables 
the spline spaces to have the nestedness property of the function spaces which can be important for several applications, 
e.g. construction of a multi-resolution analysis which leads to wavelets or tight wavelet frames (cf. e.g. Guo and Lai, 2013) 
as well as construction of multi-grid methods for numerical solutions of PDE (cf. e.g. Brenner and Scott, 1994). Another 
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Fig. 1. A pentagonal partition (left) and its refinement (right).

important feature of uniformly refining an underlying partition is to make a computer code easy to implement and efficient 
to run.

Recently a refinement scheme of pentagonal partitions was introduced in Floater and Lai (2016), pictured in Fig. 1, and 
used to reduce the error in numerical solutions based on polygonal splines which consist of generalized Bernstein–Bézier 
functions in terms of GBC.

A natural question to ask is if one can create a hexagonal refinement, i.e. refine a convex hexagon by using convex 
hexagons of smaller size. In general, one can ask if one can create a general polygonal refinement scheme. In this short 
article, we will show that one cannot refine a convex hexagon by convex hexagons only. In fact, our arguments prove more. 
That is, one cannot refine a convex n-gon by convex n-gons of smaller size whenever n ≥ 6. Hence, if one uses a polygonal 
mesh of single polygon type, then one cannot expect to generate the mesh starting from a few seeded convex n-gons with 
n ≥ 6 by a recursive refinement scheme. This result will be shown in the next section. Then we shall discuss how to refine 
a general n-gon. We introduce a simple remedy refinement scheme of hexagons by using pentagons and one hexagon of 
smaller size. Similarly, a general convex n-gon can be refined by using pentagons and a convex n-gon of smaller size. In 
addition, we shall pose a few open questions about the possibility of refining a domain of general shape by using pentagons 
only. All these will be contained in §3.

2. Main results and proofs

2.1. Partitions of polygons

Definition 2.1. Let V = {v1, v2, . . . , vn} ⊂ R
2 be a set of points. An edge ek connecting vik to v jk for some ik and jk in 

{1, 2, . . . , n} is defined as ek = {x ∈R
2 | x = tvik + (1 − t)v jk , 0 ≤ t ≤ 1}. Let E = {ek}n

k=1 be a set of edges. We say P = (V , E)

is a polygon with vertices V and edges E if

(1) ∀v ∈ V , there exists exactly two distinct edges ek1 , ek2 ∈ E such that ek1 ∩ ek2 = v;
(2) ∀ek1 , ek2 , distinct, ek1 ∩ ek2 is either the empty set or exactly one vertex v ∈ V ;
(3) The union of the edges in E forms a Jordan curve. The interior of the Jordan curve is called a face F of P .

The somewhat technical definition is meant to eliminate “poorly” behaved polygons which self-intersect. With this defi-
nition, polygons serve to separate R2 into a clear interior piece and an exterior piece.

Definition 2.2. The polygon P = (V , E) is degenerate if it contains a vertex v whose two incident edges ek1 , ek2 ∈ E with 
v = ek1 ∩ ek2 have the same slope.

The remainder of this paper will require that P is nondegenerate. Any degenerate polygon can be made nondegenerate 
by simply fusing the two edges which has the same slope (including the slope of infinity) into a single edge and omitting 
the vertex where they intersect.

Definition 2.3. A partition of a polygon P = (V , E) is a planar graph Ĝ = {V̂ , Ê, F̂ } with vertices V̂ , edges Ê and faces F̂
such that

(1) V ⊂ V̂



Download English Version:

https://daneshyari.com/en/article/440821

Download Persian Version:

https://daneshyari.com/article/440821

Daneshyari.com

https://daneshyari.com/en/article/440821
https://daneshyari.com/article/440821
https://daneshyari.com

