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a b s t r a c t

The six-dimensional space SE(3) is traditionally associated with the space of configurations of a rigid
solid (a subset of Euclidean three-dimensional space R3). But a solid itself can be also considered to be a
set of configurations, and therefore a subset of SE(3). This observation removes the artificial distinction
between shapes and their configurations, and allows formulation and solution of a large class of problems
in mechanical design and manufacturing. In particular, the configuration product of two subsets of
configuration space is the set of all configurations obtained when one of the sets is transformed by all
configurations of the other. The usual definitions of various sweeps, Minkowski sum, and other motion
related operations are then realized as projections of the configuration product intoR3. Similarly, the dual
operation of configuration quotient subsumes the more common operations of unsweep and Minkowski
difference.We identify the formal properties of these operations that are instrumental in formulating and
solving both direct and inverse problems in computer aided design and manufacturing. Finally, we show
that all required computations may be approximated using a fast parallel sampling method on a GPU and
provide error estimates for the approximation.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Shape in configuration space

Swept sets (or sweeps) are one of the fundamental represen-
tation schemes in geometric and solid modeling [1]. Generally a
swept solid S may be represented by a pair (A, B) of sets and amap-
ping g : A × B → R3, such that S = g(A, B). Typically A is a one
parameter family of rigid transformations, B is a point set inR3, and

g(A, B) = sweep(B, A) =


a∈A

Ba

where Ba denotes set B transformed by a [2]. Most commercial
CAD systemsprovide (limited) functionality for constructing swept
solids, for example, in a form of a two-dimensional cross section
moving on a space trajectory that is transversal to the plane of the
cross section. The problems of constructing, approximating, and
representing these and other types of sweeps have been studied
extensively, e.g. see a survey in [3]. Most knownmethods assume a
particular representation of the point set B and/or of the trajectory
A, and tend not to be broadly applicable.

The Minkowski sum [4,5] of two subsets A, B of R3 is defined
as the direct sum A ⊕ B, with A and B being treated as a collection
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of (vector) positions. See Fig. 1 for an example. In this sense, the
Minkowski sum can also be considered a sweep g(A, B) = A ⊕ B,
which is both generalized because A is no longer limited to a
one-parameter family of transformations, and restricted because
A contains only translations but does not allow any rotations.
Notice also that the symmetry of Minkowski sum with respect to
sets A and B is no longer obvious when it is viewed as a swept
solid (but of course, it is still true). Despite being restricted to
translational motions/configurations, Minkowski operations are
frequently applied in motion planning [6,7], containment and
packaging [8] layout [9], image processing [4] and many other
graphics and shape modeling applications [5,10]. Their popularity
is largely due to the rich algebraic structure that forms the
foundation of mathematical morphology [4]. The same algebraic
structure has been shown to exist for the traditional sweeps [11],
reinforcing the close relationship between sweeps and Minkowski
operations.

In order to unify various sweeps and Minkowski operations
within a single, more general, and hence more powerful computa-
tional framework, wewill consider a solid in terms of the positions
and orientations associated with its points. This view is equivalent
to specifying a set of coordinate frames at each point in the solid,
thus implying the solid can be treated as a set of rigid transforma-
tions relative to an absolute coordinate system, and therefore as a
subset of the six dimensional configuration space R3

× SO(3) [7].
The extension removes the artificial distinction between shapes
and their transformations because both are now subsets of the con-
figuration space. Furthermore, this view leads to the generalization
of a swept set.
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Fig. 1. Minkowski sum (shown on the right) of a solid and a surface (shown on the left) computed as a projection of the configuration product. Features from both input
shapes can be seen in the Minkowski sum.

Fig. 2. Sweeping a solid over a surface computed as the projection of the configuration product of the two shapes. Left: the projection of the configuration product shown
at discrete points on the surface boundary. Right: the projection of the configuration product corresponds to the sweep of the solid as it moves according to transformations
defined by the surface.

Adopting the representation of configuration space as the
Special Euclidean Group SE(3) [12] whose elements are 4 ×

4 homogeneous transformation matrices, given a pair (A, B) of
subsets of SE(3) the configuration product is amapping f : A×B →

SE(3) defined by

f (A, B) = A ⊗ B =


a∈A, b∈B

a · b

where · represents the group operation of matrix multiplication.
Swept sets and Minkowski sums are then both sets of configura-
tions b ∈ B transformed by rigid transformations a ∈ A, and pro-
jected as point sets into the Euclidean space R3.

This paper argues that configuration product is a key geomet-
ric modeling operation that allows the formulation and solution of
many problems in spatial design/planning involving relative con-
figuration and/or motion constraints. Broadly, all such problems
can be classified as either direct or inverse.

Direct problems usually require computing the 6D space of con-
figurations occupied by an object B as it is transformed according
to the set A. Such problems reduce to a direct evaluation and repre-
sentation of the configuration product A⊗B, and subsume the clas-
sical problems of computing various instances of Minkowski sums
and sweeps. For example, inmanufacturing applications, it is often
desirable to compute the sweep of a solid (tool) as it moves over a
curve or surfacewhilemaintaining a particular orientationwith re-
spect to the curve/surface normals/tangents. An example is shown
in Fig. 2. Another example of a direct problem is the determination
of a mechanism’s (e.g. robot’s) workspace, where it is required to
explicitly compute all the positions and orientations achievable by
a mechanism. It is common to distinguish between reachable (po-
sition) and dextrous (orientation) workspaces [13], but both are
special cases of the configuration product.

Inverse problems typically impose the constraint A ⊗ B ⊆ C ,
where C is a given subset of SE(3), and require computing the

largest possible set of configurations A or the largest shape B that
satisfies the constraint. In this sense, the inverse problems define A
or B implicitly, and include common problems of packaging, where
the set Bmust fit inside C under a set of transformations A, andmo-
tion planning where C plays the role of free (configuration) space.
Formally, the inverse problems can be solved using operations dual
to configuration product called configuration quotients, which are
proper generalizations of the Minkowski difference and unsweep
operations [11]. They are defined and studied in Section 2 of the
paper.

Several of the direct and inverse problems described above,
such as sweeps over manifolds (curves and surfaces), design of
maximal shapes under arbitrary motion constraints, and determi-
nation of maximal transformations of shapes to satisfy contain-
ment constraints, are difficult to formulate and solve except in
special cases. The main contribution of this paper is to show that
all these problems andmany others involving general motions and
relative configurations of solids may be effectively formulated us-
ing configuration products and quotients. We show that products
and quotients may be rapidly approximated by sampling subsets
of configuration space and computing all pairwise multiplications
between the sampled sets. The inherently parallel computational
procedure ismapped onto theGPU architecturewhere the configu-
ration products can be computed at a fraction of the computational
cost associated with a similar sampling algorithm on the CPU. We
also derive sampling error estimates that can be used to develop ef-
fective sampling strategies and to measure deviations from exact
computations.

1.2. Paper outline

Basic properties of configuration products and quotients are
summarized in Section 2. The duality between configuration prod-
ucts and quotients subsumes the well known duality relationship
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