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h i g h l i g h t s

� Regression and neural-network models for organics’ aqueous Henry’s Law Constants.
� Class-specific models found to perform better than general ones.
� Neural-network models improve general models’ accuracy; not so for class-specific.
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a b s t r a c t

Henry’s Law Constants (HLCs) for several hundred organic compounds in water at 25 �C were predicted
by Quantitative Structure Property Relationship (QSPR) models, with the division of organic compounds
into specific classes to yield more accurate models than generalised ones. Both multiple linear regression
(MLR) and artificial neural network (ANN) versions of models were produced for three general cases,
encompassing the entire data set; one used the six best descriptors, as determined by maximising the
correlation coefficient; another used the twelve best descriptors in a similar manner, whilst the third
used the same twelve descriptors as English and Carroll (2001). These achieved, respectively, root-mean
square errors (RMSEs) of 0.719, 0.52 and 0.607 log(Hcc) units for the MLR version and 0.601, 0.394 and
0.431 for the test set of the ANN models, where Hcc is the ratio of the compound’s concentration in the
vapour phase to that in the liquid phase. These were compared with models for six specific chemical
classes: (i) alkanes, (ii) cyclic alkanes, (iii) alkenes, (iv) halogenated compounds, (v) aldehydes, ketones
and esters grouped together, and (vi) monoaromatics. These group-specific models had RMSEs of
0.153, 0.141. 0.097, 0.168, 0.122 and 0.104 respectively for the MLR versions and 0.684, 0.719, 0.856,
0.784, 0.875 and 0.861 for the test set of the ANN models. It was found that the class-specific models
achieved lower RMSEs than the general models, when using MLR models. The use of ANN was found
to improve the predictive accuracy of the general models but failed to improve that for the class-specific
models vis-à-vis MLR.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Henry’s Law relates the equilibrium liquid- and vapour-phase
concentrations of a solute in the limit of low solute concentrations.
For dilute solutions of solute i at moderate pressures, one obtains
Henry’s law by equating the expressions for the vapour- and
liquid-phase fugacities:

yiP ¼ xiHiðpxÞ ð1Þ

where Hi(px) is the HLC with dimensions of pressure. In the limit of
infinite dilution, Hi(px) may be defined as:

HiðpxÞ ¼ c1iðLRÞi P
SAT
i ð2Þ

at low to moderate pressures on a Lewis–Randall basis. Despite the
importance of HLCs in a wide variety of engineering applications,
experimental values are available for no more than a few thousand
compounds (Meylan, 1999; Sander, 1999; Yaws, 2003). These span
several orders of magnitude, so it is customary to report HLCs on a
log10(Hcc) basis; the present work considers aqueous solubility at
STP (1 bar and 298 K), and most HLC-prediction studies focuses
on this.

Quantitative Structure Property Relationship (QSPR) models
have become increasingly important and useful in modern
research for prediction of physical, biological or chemical charac-
teristics of compounds (Nantasenamat et al., 2009); indeed, the
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recent European REACH directive has been crafted for the use
of QSPR models (Regulation (EC) No 1907/2006, 1907). The predic-
tion of HLCs is very important for a variety of industrial and
environmental applications, in terms of determining the fate of
compounds released into the atmosphere, and various computer-
based prediction methods have become of real value in recent
years. Below, we review this progress.

The vapour pressure/aqueous (VP/AS) solubility method deter-
mines the HLC from separate solubility and vapour pressure data
(Modarresi et al., 2007). This method predicts HLC as a ratio of
vapour pressure of the solute to its concentration in the liquid
phase (Hpc):

Hpc ¼
pi MW

S
ð3Þ

where MW is the molecular weight of the solute and its solubility is
represented by S.

However, as noted by Mackay et al. (1979), there can be difficul-
ties in getting accurate values for solubility and/or vapour pressure,
especially for low-volatility hydrophobic compounds (typically of
much environmental interest). It is also difficult to get accurate data
for these latter compounds because of high molecular weights, low
vapour pressure and often sparing solubility in water; Burkhard
et al. noted that, in these cases, the error in measuring vapour pres-
sure is at least 6% (Burkhard et al., 1985). Recorded data are usually
listed at higher temperatures than for environmental modelling;
extrapolating to the temperature of interest introduces more inac-
curacy (Nirmalakhandan and Speece, 1985). Clearly, if VP and AS
are not accurate, the error is ‘propagated’ to the HLC, with the resul-
tant HLC variance being greater than the individual variances of VP
and AS. If used with accurate data, the VP/AS approach can be effec-
tive (Meylan and Howard, 1991), especially for compounds with
low solubility and vapour pressure (Modarresi et al., 2007).

However, if separate accurate data for VP and AS are not avail-
able, it is then generally more accurate and pragmatic to attempt
to predict HLC directly, in view of the accumulation of variances
mentioned above. This is within the ambit of QSPRs. However, it is
important to be aware of a number of important points, before dis-
cussing and comparing different QSPR models. Many models are
trained on different data sets; when comparing, Modarresi et al.
remarked that, strictly, the same data set should be used to judge
their performance (Modarresi et al., 2007); many within the
community would tend to agree. Indeed, Gharagheizi et al. have
‘reinforced’ this by recommending that they should not only be
compared with the same data set, but developed on similar data,
with the same level of uncertainties; when quoting results,
researchers should use same definitions for deviations from true
values (Gharagheizi et al., 2012). Nevertheless, these desiderata
cannot always be fulfilled, or it may not always be practical to do so.

Hine and Mookerjee (1975) correlated log(c) values using both
bond- and group-contribution methods. By least-squares regres-
sion, they correlated 34 bond contributions and found that the dif-
ference between predicted and experimental values had a standard
deviation of 0.41 log(Hcc) units; henceforth, all references to HLC or
(predictive) errors thereof shall be in log(Hcc) units. Hine and Moo-
kerjee speculated that deviations were mainly due to interactions
between polar bonds. Their group-contribution model yielded a
more accurate result, with the standard deviation of the difference
as 0.12; they noted that this may not have been much larger than
the experimental errors. Although the authors remarked that the
group-contribution method is more accurate, bond contribution
is more widely applicable: it is not always possible to determine
values of all group contributions. Indeed, Lin and Sandler (2002)
commented that there are two major limitations with the group
contribution: no accounting for compounds’ different isomers,
with larger errors tending to occur for non-alkyl functional groups,

although these can be countered somewhat by empirically-deter-
mined correction factors. Naturally, the group-contribution
approach is not effective for compounds with functional groups
not in the training set (Modarresi et al., 2007).

Cabani et al. (1981) introduced correction factors for com-
pounds containing more than one functional group. They reported
a standard deviation of 0.5 for 209 compounds, slightly improved
over Hine and Mookerjee (1975). Interestingly, Dearden and
Schüüurmann (2003) conducted a review of available QSPR mod-
els, each applied to a diverse set of 700 compounds, to predict
the Ostwald solubility coefficient (the ratio of molar concentration
of the compound in water vis-à-vis air). They found Hine-Mooker-
jee group contribution to yield more accurate results with a SE of
0.92 (applied to 263 compounds), compared to 2.38 (for 302) for
Cabani et al.

Meylan and Howard (1991) increased the number of bond defi-
nitions from 34 to 59 bonds using least-squares analysis of 345
organic compounds, obtaining a SE of 0.34 after applying 15 correc-
tion factors. They updated this with 64 bond definitions and 57
correction factors for the bond-contribution model, while a group-
contribution version contains 93 definitions, codified as HENYWIN
(Meylan and Howard, 2012). In the Dearden–Schüürmann compar-
ison (Dearden and Schüüurmann, 2003), HENRYWIN’s group-
contribution model obtained the most accurate value for Ostwald
solubility ratio (SE of 0.88), but, however, this was only applicable
to 392 of the 700 compounds. HENRYWIN’s bond-contribution
method was applicable to all, with SE of 1.03.

Lin and Sandler (2002) took into account electrostatic charges
on nearby functional groups in the same molecule using multipole
corrections. They related liquid fugacity and activity coefficient at
infinite dilution to solvation free energy, formulating HLC in terms
of these parameters and other related ones, e.g., charge and dipole
moment. The overall RMSE was 0.34 log(Hcc) units for 395 organic
compounds, comparing favourably to Meylan–Howard’s models
(Meylan and Howard, 1991, 2012), which had RMSEs on the same
data of 0.43 and 0.52 for bond- and group-based models respec-
tively. However, the Meylan–Howard models were developed on
completely different data, containing not only organic compounds.

English and Carroll (2001) produced an early example of artifi-
cial neural networks (ANNs) for multivariate regression, producing
ten- and twelve-descriptor models with both ANN and linear
regression, based on 303 diverse organic compounds. A new, less
localised descriptor was developed as an alternative to Kier–Hall
connectivity indices (Kier and Hall, 1986; Kier and Hall, 1987).
The SE and r2 values of the ten- and twelve-descriptor ANN models
were 0.202 and 0.999, and 0.224 and 0.987 respectively. The SEs
were lower for ANN than linear regression. It was noted one model
was better for certain types of compounds and the other for differ-
ent classes. The models’ SEs compared well to other studies; the
authors demonstrated the increased accuracy of ANNs over linear
regression for their study.

Yaffe et al. (2003) developed QSPRs based on ‘fuzzy’ ARTMAP
and back-propagation neural networks using a heterogeneous set
of 495 organic compounds. Quantum chemical, PM3-level molecu-
lar-orbital theory descriptors included polarisability, dipoles, ioni-
sation potential and heat of formation. Average absolute errors of
0.03 and 0.13 log units were obtained for the overall data and
the test set, respectively. The optimal back-propagation model
was less accurate and exhibited larger average absolute errors of
0.28 and 0.27 for the validation and test sets, respectively. The
fuzzy ARTMAP-based QSPR was superior to back-propagation and
linear-regression models.

Modarresi et al. (2005), like Lin and Sandler (2002), also used the
solvation free energy to predict the HLC, but introduced ‘‘cavity
ovality’’, which is a ‘sphericity’ factor. For a set of 189 hydrocarbons,
an ANN model gave a RMSE of 0.22 compared to 0.4 when cavity
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