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h i g h l i g h t s

� Estimation of SOC at regional scale is important to address climate change issues.
� The GWRK approach was used in this study for SOC estimations.
� GWRK provided lower estimation errors compared to GWR for estimating SOC.
� GWRK performs better at regional scale as compared to the global regression.
� Local models provide better explanation of spatial distribution of SOC.
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a b s t r a c t

Soil organic carbon (SOC) is the most important parameter influencing soil health, global climate change,
crop productivity, and various ecosystem services. Therefore, estimating SOC at larger scales is important.
The present study was conducted to estimate the SOC pool at regional scale using the historical database
gathered by the National Soil Survey Staff. Specific objectives of the study were to upscale the SOC density
(kg C m�2) and total SOC pool (Pg C) across the Midwestern United States using the geographically
weighted regression kriging (GWRK), and compare the results with those obtained from the geographi-
cally weighted regression (GWR) using the data for 3485 georeferenced profiles. Results from this study
support the conclusion that the GWRK produced satisfactory predictions with lower root mean
square error (5.60 kg m�2), mean estimation error (0.01 kg m�2) and mean absolute estimation error
(4.30 kg m�2), and higher R2 (0.58) and goodness-of-prediction statistic (G = 0.59) values. The superiority
of this approach is evident through a substantial increase in R2 (0.45) compared to that for the global
regression (R2 = 0.28). Croplands of the region store 16.8 Pg SOC followed by shrubs (5.85 Pg) and forests
(4.45 Pg). Total SOC pool for the Midwestern region ranges from 31.5 to 31.6 Pg. This study illustrates that
the GWRK approach explicitly addresses the spatial dependency and spatial non-stationarity issues for
interpolating SOC density across the regional scale.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Being the largest pool in terrestrial ecosystem (Post et al.,
1990; Lal, 2002), soil organic carbon (SOC) has gained attention
because of its relevance to soil health and the global climate.
Apparent changes in global climate and ever increasing
atmospheric concentrations of greenhouse gases (GHGs) have
increased the major concerns among the researchers for slowing
down the rate of increase of these gaseous emissions. Emission
of these GHGs can partly be mitigated by sequestering C in the
soils (Batjes, 1998). To quantify this C, especially organic C,

denoted as SOC density (kg C m�2) at regional or national scales,
and to understand how does this density manifestate spatially
are the important researchable issues (Vasques et al., 2010). Nev-
ertheless, there are still a lot of uncertainties in the estimations of
SOC density because of high spatial variability (Palmer et al.,
2002). Since, Midwestern United States is the largest and most
intensive crop-producing region of the United States (Kolpin
et al., 1999). This region comprises of 21% of the Nation’s land,
and accounts for 20–30% of the nation’s total SOC pool (Guo
et al., 2006). The SOC density of this region, therefore, has created
concern about its possible effect on the regional climate change.
Thus, a better approach is needed to estimate the SOC pool for
the regional scale with reduced uncertainties, and to understand
how carbon density varies spatially.
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Traditionally, measurement techniques of SOC content rely on
methods involving direct in situ sampling, and subsequent labora-
tory analysis. Such methods involve experiments on field plots,
employing discrete point measurements of SOC or other soil prop-
erties (Merrill, 1998). These properties are then calculated for a lar-
ger area based on the data available from point measurements,
providing inaccurate and incomplete information. In order to
quantify space–time variability of SOC, a large number of measure-
ments are required at regional scale (Chang and Islam, 2000).
Assessment of SOC variability is critical to site-specific manage-
ment, soil survey and natural resource inventory. Further, spatial
distribution of SOC is important to facilitate the regional planning
(Piccini et al., 2014).

Geostatistics analysis that integrates auxiliary data with SOC
density can improve the ability to resolve finer differences of var-
iability across the space. Nevertheless, there are large uncertainties
among different approaches regarding the estimated magnitude of
SOC density. For example, approaches such as multiple linear
regression (MLR), and regression kriging (RK) (Odeh et al., 1995;
Lopez-Granados et al., 2005) can be used for a larger regional scale,
reducing time and costs (Tajgardan et al., 2010) and have better
predictions as compared to earlier traditional approaches such as
ordinary kriging (OK) where estimations are not based on predic-
tors. Major limitation, however, of these (MLR and RK) approaches
is that the relationship between target and covariates is assumed
to be stationary across the space, and hence provide a misleading
information.

Geographically weighted regression (Fotheringham et al., 2002),
a local spatial statistical is the only approach specifically designed
for exploring spatial nonstationarity, defined as when the nature
and significance of relationships between variables differs from
location to location (Fotheringham et al., 2002). Compared to glo-
bal regression, GWR can be expected to yield smaller residuals,
and outputs of GWR can be used to visualize spatial variations in
regression diagnostics and model parameters within a study region
(Gilbert and Chakraborty, 2011). Geographical relationships in
GWR vary across the space (Fotheringham et al., 1996). Geograph-
ically weighted regression kriging (GWRK) is an extension of GWR
which combined the local regressions (GWR) with kriging of the
regression residuals (Harris et al., 2010) for improving the estima-
tions of SOC density at state scale (Kumar and Lal, 2011; Kumar
et al., 2012). Use of statistical and geostatistical techniques for
mapping SOC density using a series of satellite and other easily
accessible data have been conducted globally. The GWRK approach
has been successfully attempted at the state scale in our previous
study (Kumar and Lal, 2011; Kumar et al., 2012), no attempt, how-
ever, has been made using the GWRK approach at regional scale in
the U.S. Therefore, this study was conducted to evaluate the statis-
tical correlations between SOC density and land use, bedrock geol-
ogy, and environmental data from 3485 georeferenced locations
extracted from the National Soil Survey Center (NSSC) database
for estimating the SOC density at regional (consists 12 states of
the USA) scale.

Specific objectives of the present study were to (i) estimate the
spatial distribution of SOC density for 1-m depth across the Mid-
western region of U.S.A., and (ii) estimate the total SOC pool for
1-m depth stored in different land uses of the study region based
on a recent, the GWRK approach.

2. Materials and methods

2.1. Data source and study area

The proposed study was conducted for the Midwestern region
of U.S.A., comprises of 12 states including North Dakota, South

Dakota, Wisconsin, Minnesota, Iowa, Nebraska, Indiana, Ohio, Illi-
nois, Kansas, Missouri, and Michigan (Fig. 1). Mean annual precip-
itation (MAP) of the region ranges from 846 to 1098 mm, and mean
annual air temperature (MAAT) is 10.1 �C. Geographical area of this
region is 1.98 � 106 km2 (20% of the total nation area) with eleva-
tion ranges between 97 and 2023 m above mean sea level. Major
soil orders present in the region include Alfisols, Mollisols, Histo-
sols, Entisols, and Spodosols.

A total of 3485 georeferenced data profiles were extracted from
the National Soil Survey Lab, Lincoln, NE (NSSC, 2013), of which
2788 (80%) were used for calibration and 697 (20%) for validation.
Soil parameters that were extracted from the NSSC database
include: genetic features of horizons, horizon depth (cm), SOC con-
centrations (%), and sand, silt and clay contents (%). Dataset was
loaded in Microsoft Access 2007 database, and a query was made
to match the different profiles with the soil attributes. Soil profiles
having zero value of SOC content were deleted from the dataset
and were not used in the interpolation process. Fig. 1 shows the
study site and profile locations for calibration and validation sets.

2.2. Explanatory variables, their sources and selection

Predictors used in the present study include: digital elevation
model (DEM), slope in degrees (slope), elevation, mean annual air
temperature (MAAT), mean annual precipitation (MAP), land use
(LULC), bedrock geology, and normalized difference vegetation
index (NDVI) (Fig. 2). The LULC was reclassified into 6 classes that
include: developed (6.7%), barren (0.20%), wetland (7.6%), shrubs
(19.6%), cropland (48.7%), and forests (17.2%). A total of about
100 different types of bedrocks were present in the study region.
The DEM and LULC maps were extracted from the U.S. Geologic
Survey database and climatic data [long term (1970–2000) MAAT,
and MAP] were extracted from the database of Spatial Climatic
Analysis Service of the Oregon State University (Daly et al.,
2001). A 30-m (100) resolution for all the variables was used for
the study site. The DEM, which represents a raster model of the
elevation values (Balkovič et al., 2007), was used for calculating
the slope using 3D Analyst tools of ArcGIS 9.3. The NDVI (Rouse
et al., 1973) data were extracted from the Global Land Cover Facil-
ity database, and the data derived from Moderate-Resolution
Imaging Spectroradiometer (MODIS) Bands 1 (red) and 2 (near
infrared). These NDVI values are produced every 16 d (Carroll
et al., 2004). The NDVI values ranges from �1.0 to +1.0, values clo-
ser to zero suggest low vegetation and values closer to 1.0 suggest
higher vegetation. The NDVI is widely used vegetation index due to
its wide-spread familiarity, simplicity, and ease of application (Gu
et al., 2009), and is described as:

NDVI ¼ NIR � Red
NIR þ Red

ð1Þ

where NIR is the near-infrared band and red is the red band. The
NDVI has been available since 1981 on a routine basis at a global
scale with coarse resolution. Many studies have used these archived
data to identify trends in vegetation phenology and productivity
during the last two decades.

For estimating SOC density, a total of 15 predictors were used
out of 163 after using stepwise regression analysis with SAS 9.2
software. The SOC density for individual soil profile was calculated
by summing up the soil C (kgm�2) in each soil horizon from the
surface to 1-m depth as follows (Eq. (1)):

SOCdensity ¼
Xn

i¼1

SOCi � qb � zið Þ ð2Þ

where SOCdensity is the SOC density (kg m�2) up to 1.0-m depth, i is
the soil horizon (1,2,3 , . . .,n), SOCi is the SOC concentration

50 S. Kumar / Chemosphere 127 (2015) 49–57



Download English Version:

https://daneshyari.com/en/article/4408521

Download Persian Version:

https://daneshyari.com/article/4408521

Daneshyari.com

https://daneshyari.com/en/article/4408521
https://daneshyari.com/article/4408521
https://daneshyari.com

