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�Wastewater samples from different
units in WWTP were investigated.
� DOM fractions of wastewater were

identified by EEM with self-
organizing map.
� Latent tracers were sought to monitor

DOM removal using CART.
� Protein-like material was dominant

component of DOM and deeply
removed.
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a b s t r a c t

The stabilization of latent tracers of dissolved organic matter (DOM) of wastewater was analyzed by three-
dimensional excitation–emission matrix (EEM) fluorescence spectroscopy coupled with self-organizing
map and classification and regression tree analysis (CART) in wastewater treatment performance. DOM
of water samples collected from primary sedimentation, anaerobic, anoxic, oxic and secondary sedimen-
tation tanks in a large-scale wastewater treatment plant contained four fluorescence components: tryp-
tophan-like (C1), tyrosine-like (C2), microbial humic-like (C3) and fulvic-like (C4) materials extracted by
self-organizing map. These components showed good positive linear correlations with dissolved organic
carbon of DOM. C1 and C2 were representative components in the wastewater, and they were removed to
a higher extent than those of C3 and C4 in the treatment process. C2 was a latent parameter determined
by CART to differentiate water samples of oxic and secondary sedimentation tanks from the successive
treatment units, indirectly proving that most of tyrosine-like material was degraded by anaerobic micro-
organisms. C1 was an accurate parameter to comprehensively separate the samples of the five treatment
units from each other, indirectly indicating that tryptophan-like material was decomposed by anaerobic
and aerobic bacteria. EEM fluorescence spectroscopy in combination with self-organizing map and CART
analysis can be a nondestructive effective method for characterizing structural component of DOM frac-
tions and monitoring organic matter removal in wastewater treatment process.
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1. Introduction

Dissolved organic matter (DOM) consists of a heterogeneous
mixture of aliphatic and aromatic polymers containing oxygen,
nitrogen and sulfur functional groups, which is widespread in
engineered systems (Stedmon et al., 2003; Downing et al.,
2009; Yu et al., 2012). Dissolved organic carbon (DOC), a substan-
tial part of DOM, is frequently indicative of DOM (Herzsprung
et al., 2012). DOM faces a challenge in engineered systems, as it
deeply affects all wastewater treatment performance. The content
and composition of DOM can dominate coagulation process, dis-
infection by-product formation, membrane fouling, oxidant
demand, microbial activity and pollutant transformation
(Swietlik et al., 2004; Zularisam et al., 2006; Shin et al., 2008).
Hence effective tools are required to monitor wastewater treat-
ment facilities and evaluate the effect and removal of DOM in
wastewater treatment plant (WWTP). Such methodologies can
correct treatment parameters (dissolved oxygen concentration,
hydraulic retention time, sludge recycling ratio and so on) in
response to DOM alterations in raw water and ensure efficiency
and reliability of wastewater treatment performance (Ishii and
Boyer, 2012; Yu et al., 2013).

Three-dimensional excitation–emission matrix (EEM) fluores-
cence, a rapid, inexpensive and reagentless tool, has shown great
promise for indicating water treatment efficiency and finished
water quality (Murphy et al., 2011; Ishii and Boyer, 2012). EEM
can commonly capture protein-like material, dissolved microbial
byproducts, fulvic-like material and humic-like material in the
same sample by a peak-picking method (McKnight et al., 2001;
Hudson et al., 2007); whereas multivariate data analysis tech-
niques have been increasingly applied to quantitatively interpret
EEM. The currently most widely used technique, parallel factor
analysis model with a non-negativity constraint, discriminates
independent fluorescent components from complex EEM, whose
maximum intensities are used to monitor DOM alterations in
wastewater treatment process (Bieroza et al., 2009). Moreover
Bro and Vidal (2011) have developed an EEMizer with parallel fac-
tor analysis, which can implement on-line monitoring WWTP
performance.

Self-organizing map, an unsupervised neural network algo-
rithm, is utilized to deconvolute complex EEM and to represent
distribution and relationship between organic matter fractions
and fluorescence groups (Basheer and Hajmeer, 2000; Rhee
et al., 2005). This algorithm has been applied to EEM data clus-
tering, where input feature vectors can be explored to distin-
guish any reasonable correlations among the data, without
prior knowledge or hypotheses concerning the given data set
(Lee et al., 2005). Self-organizing map, as parallel factor analysis,
may extract key features of the dataset in form of self-organizing
map normalized weights, which can quantitatively characterize
EEM clusters (Bieroza et al. 2009, 2011). Hence the weights
can indicate relative abundance of fluorescence components.
The algorithm has been commonly used to recognize olive oil
fluorescence spectroscopy, monitor various fermentation pro-
cesses, and estimate DOM removal in drinking water plant
(Scott et al., 2003; Rhee et al., 2005; Bieroza et al., 2011). How-
ever, few systematic studies have been implemented to evaluate
removal efficiency of DOM fractions from wastewater in WWTP
by self-organizing map.

The aims of this study were 2 folds: (i) to characterize EEM fluo-
rescence spectroscopy coupled with self-organizing map for iden-
tifying changes in DOM fractions and content of wastewater; and
(ii) to seek latent tracers to monitor organic matter removal in
wastewater treatment performance using classification and regres-
sion tree (CART) analysis.

2. Materials and methods

2.1. Sample collection

The water samples were collected in a large-scale WWTP in
Beijing, China. The maximum capacity of the WWTP is approxi-
mately 1000000 m3 d�1, and its serving population is about
2400000. A traditional anaerobic/anoxic/oxic (A2O) process is
adopted in the WWTP for simultaneous removal of nitrogen,
phosphorus and carbon (Yu et al., 2013). The treated wastewater
moves into the disinfection unit and is subsequently discharged
into the river. The influent wastewater in the WWTP is domestic
sewage only mixed with a small amount of industrial wastewa-
ter. The average influent concentrations of chemical oxygen
demand, biochemical oxygen demand, suspended solids and
ammonium are approximately 500, 200, 250 and 30 mg L�1

respectively, while the effluent from the WWTP meets further
decreases in their concentrations to less than 60, 20, 30 and
3 mg L�1 respectively.

Water samples were collected from corresponding effluents of
the units, i.e. samples #1 and #2 from effluent of the primary sed-
imentation tank, #3 and #4 from the anaerobic tank, #5 and #6
from the anoxic tank, #7 and #8 from the oxic tank, and #9 and
#10 from the secondary sedimentation tank. Duplicate samples
at each sample site were collected with a Wildco Kemmerer 1.2 L
sampler, completely mixed and transferred into an EE BOD bottle.
Samples were filtered through glass fiber filters (Whatman GF/F,
0.7 lm, pre-combusted at 450 �C for 4 h). The filtrate was collected
into precombusted glass amber bottles and stored in the dark at
4 �C until analyzed. All samples were analyzed within 2 d of
collection.

2.2. EEM fluorescence spectroscopy

DOC concentrations of all filtrate samples were determined by a
TOC analyzer (analytic jena multi N/C 3100 TOC, Germany). EEM
spectroscopy was recorded for each sample on a Hitachi Fluores-
cence Spectrophotometer (F-7000) equipped with the fluorescence
solutions 2.1 software (Hitachi high-Technologies Corporation
1998, 2008) for data processing. Scans were conducted with
excitation wavelengths from 200 to 450 nm at 5 nm steps, emis-
sion wavelengths from 280 to 550 nm at 5 nm steps, 5 nm band-
with, and 0.5 s integration time. Instrument excitation and
emission were adjusted, before EEM spectra of Mili-Q water were
subtracted from all sample EEM. Inner filtering effect was cor-
rected by absorbance spectroscopy (McKnight et al., 2001). The
fluorescence intensities were normalized the area under the water
Raman peak (382–412 nm emission ranges at 350 nm excitation),
and then converted to quinine sulfate units. (Murphy et al.,
2011; Dahm et al., 2013).

2.3. Self-organizing map model

Self-organizing map can carry out a transformation of initial
high-dimensional matrix of input data into a two-dimensional
map, i.e. it projects input vectors of high-dimension onto a specific
set of single processing elements (neurons), whereas keeping the
topological and metric correlations of the input data sets (Garcia
et al., 2007). The algorithm consists of two-layered artificial neural
networks, namely an input layer and an output layer. Each vector
in the input layer is adequately connected to each neuron of the
output layer which is associated with the reference vector that
has self-organizing map weights. Similarity between the input
vector and the reference vector is determined by the Euclidean
distance metric. Subsequently, the output neuron which is closest
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