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We show how to compute in a straightforward manner the geometric characteristics of
a conic segment in rational Bézier form, by employing complex arithmetic. For a central
conic, a simple quadratic equation defines the foci location, and its solution furnishes not
only an explicit formula for the foci, but also for the center, axis direction and linear
eccentricity.
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1. Introduction

A key reason for adopting the rational model in CAGD is its ability to represent exactly conic sections, or conics for
short. Due to their remarkable reflective properties, these curves find widespread use in optical and telecommunication
instruments (Downs, 1993). The quadratic Bézier representation of conics is thus found in most textbooks on CAGD (Farin,
2001; Farin and Hansford, 2000; Hoschek and Lasser, 1993), and all NURBS monographs (Farin, 1999; Piegl and Tiller, 1997;
Rogers, 2001). Nevertheless, only Piegl and Tiller (1997) include formulae, due to Lee (1987), for obtaining the geometric
characteristics (center, foci, axes, . . .) of an already constructed rational quadratic Bézier segment, in terms of its weights
and control points. Recently, Xu et al. (2010) have derived explicit formulae, based on Lee’s results, for computing the
eccentricity of a Bézier conic.

Though not difficult, Lee’s computations are involved, requiring for instance the use of Lagrange multipliers to derive the
axis length. Furthermore, no simple expressions are given for the foci, the relevant points regarding reflective properties.
This shortcoming was tackled by Albrecht (2001), who emphasizes determining the foci of a given conic in Bézier form.
However, her derivation involves computing the singular points of a certain algebraic curve of degree four. Explicit formulae
for all the geometric characteristic are found in the article by Goldman and Wang (2004), although they do not employ the
customary Bézier representation. They derive their results from the invariants of rational quadratic parameterizations under
rational linear reparameterizations. Finally, Cantón et al. (2011) show how to compute the geometric characteristics of a
conic in Bézier form, by writing its implicit equation in coordinate-free fashion.

We present here an alternative and more geometric approach, based on representing conics in the complex plane C.
The space C enjoys the algebraic structure of field, where not only can points be added, but also multiplied and divided,
and square roots are meaningful. Complex arithmetic drastically simplifies the expressions for the foci, center, and linear
eccentricity of a Bézier conic. In Section 2, we first characterize the focus in a trivial form with complex notation. This basic
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Fig. 1. Bézier points bk of a conic with focus at F: a) General conic. b) Parabola.

result allows us to obtain the foci in Section 3, as the solutions of a (complex) quadratic equation. The center and linear
eccentricity come as by-products. Finally, conclusions are drawn in Section 4.

2. Characterizing the foci with complex products

Before trying to obtain the foci of a given Bézier conic, we recall the inverse problem, that is, how to construct arbitrary
Bézier conics of given focus F, say in standard form (with unit weights for the endpoints b0, b2). Sánchez-Reyes (2004)
shows that, whereas we can choose arbitrarily b0, b2, the inner point b1 and weight w1 = w are constrained:

(1) The point b1 lies on the bisector of the lines Fb0, Fb2, i.e., so that the segments b0b1 and b1b2 see F with the same
angle � (Fig. 1a).

(2) The inner weight w takes a specific value, determined by the radial distances rk:

w2 = r0r2

r2
1

, rk = |rk|, rk = bk − F. (1)

Condition (1) simply rewrites in Bézier representation a classical result (Salmon, 1960), which states that the intersection of
any two tangents to a conic and both points of contact are seen from F within equal angles �.

The radial values rk can hence be written in polar form as complex exponentials rk = rkeiθk (Needham, 1997) of moduli
rk , and arguments θk equally spaced by an angle �. By introducing these complex exponentials and the value w (1), we
obtain a startling simple characterization of the focus F, in terms of complex products:

(wr1)
2 = r0r2, rk = bk − F. (2)

For the case of a parabola (w = 1), this relationship indicates that the values rk form a geometric progression, which
admits an intuitive interpretation: the adjacent triangles Fb0b1 and Fb1b2 are similar (Fig. 1b). This geometric property was
already noted by Sánchez-Reyes (1990), and also derives from the pedal-point construction of a parabola (Ueda, 1997).

3. Computing the foci, center and linear eccentricity

Suppose that we are given a Bézier conic in standard form, with control points bk and inner weight w1 = w . To find the
focus F, simply interpret equality (2) as an equation in the unknown F, and solve it. As shown in this section, simple algebra
yields the roots, according to the well-know case distinction that determines the conic type: ellipse or hyperbola (w �= 1),
and parabola (w = 1). To fix our ideas, we assume the customary condition w > 0. However, the sign of w plays no role, as
reflected in the characterization (2), where w is squared. By reversing its sign, we just obtain the complementary segment
of the same conic (Farin, 2001).

3.1. Ellipse or hyperbola (w �= 1)

The case w �= 1 yields a central conic, i.e., an ellipse (w < 1) or hyperbola (w > 1). Eq. (2) is quadratic in F and, after
straightforward manipulation, can be written in monic form:

F2 − 2CF + d = 0, (3)

with coefficients C, d expressible as barycentric combinations:
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