
Constrained 3D shape reconstruction using a combination

of surface fitting and registration

Yang Liu a,*, Helmut Pottmann b, Wenping Wang a

a Computer Graphics Group, Department of Computer Science, The University of Hong Kong, Hong Kong, China
b Geometric Modeling and Industrial Geometry, Vienna University of Technology, Vienna, Austria

Received 2 August 2005; accepted 26 January 2006

Abstract

We investigate 3D shape reconstruction from measurement data in the presence of constraints. The constraints may fix the surface type or set

geometric relations between parts of an object’s surface, such as orthogonality, parallelity and others. It is proposed to use a combination of

surface fitting and registration within the geometric optimization framework of squared distance minimization (SDM). In this way, we obtain a

quasi-Newton like optimization algorithm, which in each iteration simultaneously registers the data set with a rigid motion to the fitting surface

and adapts the shape of the fitting surface. We present examples to show the applicability of our method to constrained 3D shape fitting for reverse

engineering of CAD models and to high accuracy fitting with kinematic surfaces, which include surfaces of revolution (reconstructed from

fragments of archeological pottery) and spiral surfaces, which are fitted to 3D measurement data of shells. Our optimization algorithm can

combine registration of multiple scans of an object and model fitting into a single optimization process which is shown to be superior to the

traditional procedure, which first registers the data and then fits a model to it.
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1. Introduction

The motivation for the present research comes from

reconstruction of objects from 3D scanner data, where special

kinematic surfaces (cones, cylinders, general surfaces of

revolution, helical surfaces) appear frequently. Many recon-

struction algorithms for the more general representatives of

these surface classes require estimated surface normals [20,23].

Although these methods are quite efficient when good normal

estimates are available, they lack the desired precision if it is

difficult to obtain accurate normal estimation or the deviation

of the data from the ideal shape model is relatively large; an

example is the reconstruction of vessels from archeological

findings. Moreover, in these methods the computation of the

sweeping motion is separated from the computation of the

swept profile, which is a further source of errors.

In the present paper, we extend recent work on improved

reconstruction of surfaces of revolution [26] with a more

generally applicable concept arising from the geometric

optimization framework of squared distance minimization

(SDM) [18,19,25,27,28]. Our new method combines the two

types of optimization problems that have been solved so far

with SDM, namely curve/surface fitting and registration. This

new approach is not only applicable to surfaces of revolution

but also to other classes of surfaces and to a number of surface

reconstruction problems in reverse engineering in the presence

of constraints.

1.1. Previous work

Since the focus of the present work is on constrained 3D

shape reconstruction, we only review research in this direction.

A constraint may fix the surface type: there have been a

considerable number of contributions to fitting with special

surfaces and thus we refer to [23] for a detailed survey. The

existing methods are mainly taken from geometry (Gaussian

image, line geometry, kinematical geometry), image proces-

sing (methods in extension of the Hough transform) and

optimization (non-linear least squares problems). They are also

used for surface type recognition (shape filters).

Fitting data with a surface of a given type that is determined

with appropriate shape filters, while maintaining constraints
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between the individual elements of the surface, is a challenging

problem [23]. Not only do we need to check the consistency of

the constraints, we also need to fit the data simultaneously

under these constraints. The work of Benkö et al. [2], Fisher

[6], and Karniel et al. [10] can be considered to constitute the

state of the art in this area. In the actual fitting part of the

problem, most authors use a least squares formulation which

embeds the constraints via penalty terms.

Our research is based on a combination of registration and

fitting, and in this sense closely related to the work on

knowledge based image segmentation via a combination of

registration and active contours [15,17,24] and to deformable

models introduced by Terzopoulos and Fleischer [21]. We also

present a new solution for the simultaneous treatment of

multiple view registration and model fitting, which extends

prior work by Jin et al. [9] and Tubic et al. [22].

1.2. Contributions

Our contributions in this paper are:

† The extension of the SDMmethod to surface approximation

with error measurement orthogonal to the fitting surface;

† The combination of registration and surface fitting within

the SDM framework;

† Refined algorithms for fitting with kinematic surfaces

(rotational, helical and spiral surfaces) plus a demonstration

of their efficiency for shape reconstruction from measure-

ment data of archeological pottery, shells and engineering

objects;

† A new way of incorporating constraints into 3D surface

reconstruction for applications in reverse engineering of

CAD models;

† An efficient optimization algorithm which combines

multiple view registration and model fitting and in this

way achieves higher accuracy than the traditional approach

which first registers the data and then fits a model to it.

2. Fundamentals of SDM

Here we summarize a few basic facts about squared distance

minimization (SDM). For more details and issues of efficient

implementation we refer to [1,18,19,25,27]. Before entering

this discussion, we would like to point out that many authors

have used the distance field [13,14] for registration and fitting;

in fact, the concept of the distance field is so closely tied to the

problem that it must occur in some way. However, most papers

do not use the distance function in the same way as we are

doing it: we use local quadratic approximants of the squared

distance function and in this way obtain fast local convergence

via algorithms of the Newton or quasi-Newton type.

2.1. Squared distance function of a surface

Given a surface F3R
3, the squared distance function d2

assigns to each point x2R
3 the square of its shortest distance

to F. The importance of this function for our algorithms lies in

the fact that we want to compute a surface, which minimizes

the sum of squared distances to the data point cloud. Since

several important optimization concepts require second order

approximants of the objective function, we need to derive

second order approximants of d2.

Let us fix the notation. We consider a surface F with unit

normal vector field n(s)Zn3(s), attached to points s2F. At

each point s, we have a local Cartesian frame (n1, n2, n), where

the first two vectors n1, n2 determine the principal curvature

directions. We will refer to this local frame as the principal

frame II(s). Let kj be the (signed) principal curvature in the

principal curvature direction nj, jZ1,2, and let rjZ1/kj.

Let s2F be the normal foot point of a point p2R
3, i.e., s is

the closest point onF to p. Expressed in the principal frame at s

the second-order Taylor approximant Fd of the function d2 at a

point x2R
3 in a neighborhood of p is:

FdðxÞZ
d

dKr1
½n1$ðxKsÞ�2 C

d

dKr2
½n2$ðxKsÞ�2

C ½n3$ðxKsÞ�2: (1)

Here, [nj$(xKs)]2, jZ1,2,3, are the squared distances of x to
the principal planes and tangent plane at s, respectively.

In the important special case of dZ0 (i.e., pZs), the

approximant Fd equals the squared distance function to the

tangent plane of F at s. Thus, if p is close to F, the squared

distance function to the tangent plane at p’s closest point on F

is a good approximant of d2.

In a Newton-like iteration it is important to employ

nonnegative quadratic approximants; we obtain them by

removing from the expression of Fd(x) in (1) those terms

with a negative coefficient d/(dKrj); see [25].

2.2. Registration using SDM

A set of points X0Z ðx01;x
0
2;.Þ3R

3 is given in some

coordinate system S0. It will be rigidly moved (i.e. registered)

to be in best alignment with a given surface F, represented in

another system S. We view S0 and S as a moving system and a

fixed system, respectively. A position of X0 in S is denoted by

XZ(x1,x2,.). It is the image of X0 under some rigid body

motion a. Since we identify positions with motions and the

motions have to act on the same initial position, we write XZ
a(X0), or xiZaðx0i Þ.

The registration problem is formulated in a least squares

sense [3,5]: Compute a rigid body transformation a*, which

minimizes the sum of squared distances of aðx0i Þ to F:

FðaÞZ
X
i

d2ðaðx0i Þ;FÞ: (2)

Starting from an appropriate initial position a0, SDM

performs a Newton-like iteration to minimize F [19]. We

describe here a single iteration of the algorithm: Since F is the

sum of squared distances of the data points xi to the model
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