
A C-tree decomposition algorithm for 2D and 3D

geometric constraint solving*

Xiao-Shan Gaoa,*, Qiang Lin, Gui-Fang Zhangb

aKey Laboratory of Mathematics Mechanization, Institute of Systems Science, AMSS, Academia Sinica, Beijing 100080, China
bDepartment of Computer Science and Technology, Tsinghua University, Beijing, China

Received 14 June 2004; received in revised form 4 March 2005; accepted 10 March 2005

Abstract

In this paper, we propose a method which can be used to decompose a 2D or 3D constraint problem into a C-tree. With this decomposition,

a geometric constraint problem can be reduced into basic merge patterns, which are the smallest problems we need to solve in order to solve

the original problem in certain sense. Based on the C-tree decomposition algorithm, we implemented a software package MMP/Geometer.

Experimental results show that MMP/Geometer finds the smallest decomposition for all the testing examples efficiently.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Geometric constraint solving; Parametric CAD; General construction sequence; Basic merge pattern; Decomposition tree; Graph algorithm

1. Introduction

Geometric constraint solving (GCS) is one of the key

techniques in parametric CAD, which allows the user to

make modifications to existing designs by changing

parametric values. GCS methods may also be used in

other fields like molecular modelling, robotics and computer

vision. There are four major approaches to GCS: the

numerical approach [14,26,31], the symbolic approach

[15,23,25,33], the rule-based approach [2,24,34,35] and

the graph-based approach [6,7,12,17,20,28,30]. This paper

will focus on using graph algorithms to decompose large

constraint problems into smaller ones.

In [32], Owen proposed a GCS method based on the tri-

connected decomposition of graphs, which may be used to

reduce a class of constraint problems into constraint

problems consisting of three primitives. In [7,16], Hoffmann

et al. proposed a method based on cluster formation to solve

2D and 3D constraint problems. An algorithm was

introduced by Joan-Arinyo et al. in [21] to decompose a

2D constraint problem into an s-tree. This method is

equivalent to the methods of Owen and Hoffmann, but is

conceptually simpler.

The above approaches use special constraint problems,

i.e. triangles, as basic patterns to solve geometric constraint

problems. In [28], Latham and Middleditch proposed a

connectivity analysis algorithm which could be used to

decompose a constraint problem into what we called the

general construction sequence (defined in Section 2). A

similar method based on maximal matching of bipartite

graphs was proposed by Lamure and Michelucci [27]. In

[17], Hoffmann et al. gave an algorithm to find rigid bodies

in a constraint problem. Based on this, a general approach to

GCS was proposed [18]. In [19], Jermann et al. also gave a

general approach to GCS based on the idea in [17].

In this paper, we propose a method which can be used

to decompose a general 2D or 3D constraint problem into a

C-tree (connectivity tree). The algorithm is inspired by two

facts. First, the general construction sequence obtained with

Latham–Middleditch’s algorithm reduces the original con-

straint problem into smaller ones. But, in many cases these

smaller problems could be further simplified. Second, we

observed that not all rigid bodies in a constraint problem can

be used to split the original problem. We introduced the key

concept of faithful subgraph, which may lead to a split of the

constraint problem. The C-tree decomposition algorithm

Computer-Aided Design 38 (2006) 1–13

www.elsevier.com/locate/cad

0010-4485//$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cad.2005.03.002

* Partially supported by a National Key Basic Research Project of China

(2004CB318000) and by a USA NSF grant CCR-0201253.
* Corresponding author. Tel.: C81 10 6254 1831; fax: C81 10 6263

0706.

E-mail address: xgao@mmrc.iss.ac.cn (X.-S. Gao).

http://www.elsevier.com/locate/cad


consists of two main steps: using the general construction

sequence to find faithful subgraphs and using the faithful

subgraph to split the constraint problem into two sub-

problems. The complexity of the algorithm is O(n2(nCe)e),

where n and e are the numbers of geometric objects and

constraints, respectively. Major advantage of the algorithm

is that it can be used to decompose a general constraint

problem into certain kind of smallest problems and it leads

to a simple and efficient implementation.

A C-tree is a binary tree. For each node in the tree, its left

child is a rigid body which will be solved first. After the

left child is solved, we may use the information from the

left child to solve the right child and to merge the left and

right children to solve the constraint problem represented by

the node. All leaves of the C-tree are general construction

sequences. Therefore, solution of a constraint problem is

reduced to the solution of general construction sequences

with a C-tree decomposition.

We show that the solution of a general construction

sequence can be reduced to the solution of basic merge

patterns, which are the smallest problems we need to solve

in order to solve the original problem in certain sense. We

give a classification of the basic merge patterns both in 2D

and 3D cases and show that some of the basic merge

patterns have closed-form solutions.

We say that a graph decomposition method for GCS is a

general method if it can be used to handle all constraint

problems. Among the general GCS methods [18,19,24,27,

28], the method MFA proposed in [18] and the C-tree method

can be used to find a smallest decomposition in certain sense.

The MFA and C-tree methods have the same complexity.

Both can be used to solve 2D and 3D problems, although

paper [18] focuses on the 2D case and this paper focuses on

both 2D and 3D cases. Comparing to the algorithm in [18],

our algorithm is simpler and easy to implement.

Based on the C-tree decomposition algorithm and several

other algorithms proposed by us, we implemented a GCS

software package MMP/Geometer in the Windows

environment with VCCC. Experimental results show that

the software package finds the smallest decomposition for

all the testing examples efficiently.

The rest of the paper is organized as follows. In Section 2,

we introduce the methods to generate general construction

sequences. In Section 3, we give the algorithm to generate the

C-tree. In Section 4, we give a classification of the basic merge

patterns. In Section 5, we report the experimental results for

our implementation of the C-tree decomposition algorithm.

In Section 6, we present the conclusion.

2. General construction sequence

2.1. Basic concepts

In the two-dimensional Euclidean plane, we consider two

types of geometric primitives: points and lines and two types

of geometric constraints: the distance constraint between

point/point, point/line and the angular constraint between

line/line. In the three-dimensional Euclidean space, we

consider three types of geometric primitives: points, planes

and lines and two types of geometric constraints: the

distance constraints between point/point, point/line, point/

plane, line/line and the angular constraints between line/

line, line/plane, plane/plane. A geometric constraint

problem consists of a set of geometric primitives and a set

of geometric constraints among these primitives. Angular

and distance constraints between two primitives o1 and o2

are denoted by ANG(o1, o2)Za and DIS(o1,o2)Zd,

respectively. We will use pi, hi and li to represent points,

planes and lines, respectively.

We use a constraint graph to represent a constraint

problem. The vertices of the graph represent the geometric

primitives and the edges represent the constraints. For a

constraint graph G, we use V(G) and E(G) to denote its sets

of vertices and edges, respectively. Fig. 2 is the graph

representation for the constraint problem in Fig. 1.

For an edge e in a constraint graph, let DOC(e) be the

valence of e, which is the number of scalar equations

required to define the constraint represented by e. Most

constraints considered by us have valence 1. There are

several exceptions: (1) Constraint DIS(p1,p2)Z0. In this

case, p1Zp2. In 2D case, the constraint has valence 2; in 3D,

the constraint has valence 3. We assume that this case does

no occur. (2) Constraint DIS(p1,l1)Z0 has valence 2 in 3D.

(3) Constraint ANG (h1,h2)Z0 has valence 2 in 3D.

(4) Constraint ANG (l1,l2)Z0 has valence 2 in 3D. These

constraints are degenerate cases.

For a geometric primitive o, let DOF(o) be the degrees

of freedom for o, which is the number of independent

parameters required to determine the geometric

P2
P3

P4

P1

l4

l1

l3

l2

Fig. 1. A 2D problem: lengths of four edges and ANG (l2,l4) are given.

P1 P4

l4

l2

P2 P3

l1 l3

Fig. 2. Graph representation for the problem in Fig. 1.

X.-S. Gao et al. / Computer-Aided Design 38 (2006) 1–132



Download	English	Version:

https://daneshyari.com/en/article/441075

Download	Persian	Version:

https://daneshyari.com/article/441075

Daneshyari.com

https://daneshyari.com/en/article/441075
https://daneshyari.com/article/441075
https://daneshyari.com/

