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Abstract

We present an algorithm for computing a B-spline representation for Powell–Sabin splines on the sphere. The B-splines form
a partition of unity and we define control points that constitute control triangles that give us a good insight in the shape of the spline.
We further consider a number of CAGD applications such as approximation and compression of a given sphere-like triangular mesh,
and editing global shape and local detail of a spline using spline subdivision.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Modeling sphere-like manifold surfaces is a challenging task. In general they can be described as surfaces that are
homeomorphic to the sphere, i.e., there exists a continuous invertible mapping from the sphere-like manifold onto the
sphere. The traditional approach decomposes the geometric data into a group of charts and maps each chart into a
planar parametric domain. Then a spline surface is fitted to each chart and the different patches are stitched together
while maintaining some weak form of continuity such as tangent plane continuity, see, e.g., Eck and Hoppe (1996).
The topology of each chart is restricted: it must be homeomorphic to a disk.

In this paper we describe a different approach. By using spherical Powell–Sabin (PS) B-splines on a spherical tri-
angulation we can model spherical surfaces without decomposing them into different charts and mapping each chart
to a planar parametric domain. The spherical PS B-splines have the same continuity properties as their planar coun-
terparts and their construction is based on the concept of spherical Bernstein–Bézier polynomials that was introduced
by Alfeld et al. (1996a). Furthermore the PS B-splines form a partition of unity and we find control points for the PS
B-splines that can give us a good insight in the shape of the spline. We note that related work has been done by Pfeifle
and Seidel (1995) and Neamtu (1996) who have extended the concept of simplex splines to the sphere.
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The paper is organized as follows. We begin by giving the definition of spherical Bernstein–Bézier polynomials
and by reviewing how the spherical spline space of PS splines is constructed in Section 2. Next, in Section 3, we
introduce B-splines for the space of spherical PS splines that form a partition of unity and we introduce control points
and control triangles that give us insight in the shape of the spline. Section 4 is devoted to applications in CAGD and
we show how these B-splines may be used in practice to approximate a given sphere-like triangular mesh. Lastly, we
conclude with some final remarks.

2. Spherical Powell–Sabin splines

We begin by introducing homogeneous and spherical spline spaces following Alfred et al. (1996a, 1996b, 1996c).
A function f defined on R

3 is homogeneous of degree d provided that f (αv) = αdf (v) for all real α and all v ∈ R
3.

We are interested in the space Hd of trivariate polynomials of degree d that are homogeneous of degree d . The
space Hd is a

(
d+2

2

)
dimensional subspace of the space of trivariate polynomials of degree d . Let {v1, v2, v3} be a set

of linearly independent unit vectors in R
3. We call

T := {
v ∈ R

3 | v = b1(v)v1 + b2(v)v2 + b3(v)v3 with bi(v) � 0
}

the trihedron generated by {v1, v2, v3}. Each v ∈ R
3 can be written in the form

v = b1(v)v1 + b2(v)v2 + b3(v)v3, (1)

and we call b1(v), b2(v), b3(v) the trihedral coordinates of v with respect to T . Given an integer d � 0, the homoge-
neous Bernstein basis polynomials of degree d on T are the polynomials

Bd
ijk(v) := d!

i!j !k!b1(v)ib2(v)j b3(v)k, i + j + k = d,

and they form a basis for Hd . We define a spherical triangle as the restriction of a trihedron T to the unit sphere S.
The restrictions of the trihedral coordinates (1) to a spherical triangle with vertices v1, v2 and v3 are called spherical
barycentric coordinates. Any homogeneous polynomial p of degree d and its restriction to a spherical triangle τ has
a Bernstein–Bézier representation with respect to τ

p(v) :=
∑

i+j+k=d

cijkB
d
ijk(v),

and the coefficients cijk are the Bézier ordinates.
We write Hd(Ω) for the restriction of Hd to any subset Ω of the unit sphere S, and refer to Hd(Ω) as the space of

spherical polynomials of degree d . Similarly, we write Hd(H) for the restriction of Hd to any hyperplane H in R
3.

This is just the well-known space of bivariate polynomials. All these spaces have the same dimension
(
d+2

2

)
. Let Δ

be a conforming spherical triangulation of Ω ⊂ S. We recall that a triangulation is called conforming if two adjacent
triangles share exactly one common vertex or one common edge. Then we define the space of spherical splines of
degree d and smoothness r associated with Δ to be

Sr
d(Δ) := {

s ∈ Cr(S): s|τ ∈ Hd(τ ), τ ∈ Δ
}
,

where s|τ denotes the restriction of s to the spherical triangle τ . Keeping up continuity conditions between neigh-
bouring spherical triangles results in nontrivial relations between their Bézier ordinates. Therefore we will focus on
the Powell–Sabin 6-split of a triangulation to overcome this problem.

Suppose that the spherical triangulation Δ consists of triangles τj , j = 1, . . . , t , with vertices vi , i = 1, . . . , n. For
the remainder of the paper we will always assume that the diameter of the triangles in Δ is bounded,

diam(τj ) � 1, diam(τj ) := sup
{
arccos(u · v), u, v ∈ τj

}
.

This assumption guarantees that the projections that we use throughout are always well defined. The Powell–Sabin
6-split ΔPS of Δ divides each triangle τj ∈ Δ into six smaller triangles with a common vertex as follows:

(1) Define the interior point zj for each triangle τj as the incenter of the triangle τj . If v1, v2, v3 are the vertices of
τj then we define its incenter as the point on S that is obtained by radially projecting the incenter of the planar
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