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We propose to implement the m-ary 2N-point Dubuc–Deslauriers subdivision scheme 
(DDSS) using a series of repeated local operations, which are based on a recursive 
formula between the newly inserted points of m-ary 2N-point DDSS and those of m-ary 
(2N − 2)-point and m-ary (2N − 4)-point DDSSs. Numerical analysis reveals the robustness 
of our method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let {P 0,n ∈ R
d} be the initial control points and {P K ,n}(K ≥ 1) ∈ R

d be the refined control points at level K , then 
the m-ary 2N-point Dubuc–Deslauriers subdivision scheme (DDSS) is iteratively defined as follows (Deslauriers and Dubuc, 
1989)

P K+1,mn = P K ,n, (1)

P K+1,mn+k = PN
K ,n

(
k

m

)
,k = 1,2, · · · ,m − 1, (2)

where

PN
K ,n(t) =

N∑
j=−N+1

LN
j (t)P K ,n+ j

is the (2N − 1)-degree polynomial curve interpolating the points {P K , j}n+N
j=n−N+1 at knots {−N + 1, −N + 2, · · · , N}, and
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LN
j (t) =

N∏
i=−N+1,i �= j

(t − i)

N∏
i=−N+1,i �= j

( j − i)

(3)

is the j-th Lagrange basis function defined on knots {−N + 1, −N + 2, · · · , N}.
Generally, the computation of high-degree polynomials is not very robust and efficient, so is that of the new inserted 

points of m-ary 2N-point DDSS for large N , which are sampled from a polynomial with degree 2N − 1. Furthermore, it 
should store many mask coefficients in case of large values of N .

In the field of geometric modeling, pyramid algorithms (Goldman, 2002; Hormann and Schaefer, 2016) are widely used to 
avoid the inefficiency and instability of computing high-degree polynomials. Analogues of pyramid algorithms in subdivision 
are the subdivision algorithms using repeated local operations, in which only neighboring information is included. For 
example, repeated local operations are used to implement approximating subdivision schemes generalized from high-degree 
splines (Lane and Riesenfeld, 1980; Stam, 2001; Zorin and Schröder, 2001; Cashman et al., 2009), interpolatory subdivision 
for quadrilateral meshes (Deng and Ma, 2013) and pseudo-spline subdivision surfaces (Deng and Hormann, 2014). In this 
note, we derive repeated local operations for m-ary 2N-point DDSS in Section 3 based on the recursive formula given in 
Section 2.

2. Recursive formula for the coefficients of m-ary 2N-point DDSS

Theorem 2.1. Let LM−1
j (t), LM

j (t) and LM+1
j (t) be the j-th Lagrange basis functions defined on knots {−M +2, · · · , M −1}, {−M +1,

· · · , M} and {−M, · · · , M + 1}, respectively, then for −M ≤ j ≤ M + 1, we have

LM+1
j

(
k

m

)
− LM

j

(
k

m

)

= (Mm − k)(Mm + k − m)

m2(4M2 − 1)

[
D M

j

(
k

m

)
+ 1

2M
D M

j

(
1 − k

m

)]
, (4)

where

D M
j (t) = 2

[
LM

j (t) − LM−1
j (t)

]
−

[
LM

j−1(t) − LM−1
j−1 (t)

]
−

[
LM

j+1(t) − LM−1
j+1 (t)

]
, (5)

LM
j

(
k

m

)
= 0( j = −M, M + 1), LM−1

j

(
k

m

)
= 0( j = −M,−M + 1, M, M + 1),

and m > k > 0 are two integers.

Proof. For −M ≤ j ≤ −M + 3 and M − 2 ≤ j ≤ M + 1, straightforward computations yield Eq. (4). Hence only the cases of 
−M + 4 ≤ j ≤ M − 3 should be verified.

First, substituting k
m for t in LM+1

j (t) and LM
j (t) leads to the fact that

LM+1
j

(
k

m

)
− LM

j

(
k

m

)

=
[(

k

m
− M − 1

)(
k

m
+ M

)
− ( j − M − 1)(M + j)

]
·

M∏
i=−M+1,i �= j

(
k
m − i

)

M+1∏
i=−M,i �= j

( j − i)

= (k − mM − m)(k + mM) + m2(M + 1 − j)(M + j)

m(k − mj)(−1)M+1− j(M + j)!(M + 1 − j)! ·
M∏

i=−M+1

(
k

m
− i

)

= (−1)M+1− j

(M + j)!(M + 1 − j)!
(

k

m
+ j − 1

)
·

M∏
i=−M+1

(
k

m
− i

)
. (6)

Next, by the definition (5) of D M
j

(
k
m

)
, it can be seen that
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