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Given a piece-wise linear function defined on a type I uniform triangulation we construct 
a new partition and define a smooth cubic spline that approximates the linear surface and 
preserves its shape. The key piece is a new macro-element that has the ability to combine 
six independent gradients coming together at an interior vertex in a smooth yet shape-
preserving fashion. The shape of the resulting spline surface follows local changes in the 
shape of the piece-wise linear interpolant without overshooting. We prove that convexity, 
positivity and monotonicity of the spline depend on the local data only. Computational 
scheme for Bernstein–Bezier spline coefficients is local and fast. Numerical examples 
highlight unique shape-preserving properties of the spline.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The concept of shape-preservation rises naturally in data fitting problems. Most often we wish that approximating curves 
and surfaces preserve positivity, monotonicity and convexity of the data. Various methods have been proposed for construct-
ing shape-preserving spline surfaces. For example, the problem of interpolating scattered positive data is solved by positive 
splines minimizing a thin-plate energy functional in Utreras (1985). Iterative algorithms are proposed to exploit a variational 
approach with positivity constraints in Kouibia and Pasadas (2003) and Lai and Meile (2015). Local gradient adjusting meth-
ods for non-negative interpolation of scattered data in C1 macro-element spaces, Powell–Sabin and Clough–Tocher splits, 
are presented in Schumaker and Speleers (2010). In Carlson and Fritsch (1985) authors develop an algorithm for monotone 
C1 piecewise bicubic interpolation on a rectangular mesh. This work is continued in Carlson and Fritsch (1989) by present-
ing a simplified algorithm producing visually pleasing monotone interpolant. Box splines are studied in Chui et al. (1989), 
where the estimates for grid-size are obtained to guarantee convexity, monotonicity and positivity of solutions. A degree 
adaptive method for shape-preserving interpolation over a rectangular grid is presented in Costantini and Fontanella (1990). 
In Costantini and Manni (1991) the method for construction of differentiable interpolating surfaces over rectangular grids 
produces co-monotone results. In Schmidt and Hess (1993) interpolation of data sets given on rectangular grids is per-
formed by rational bicubic C2 splines preserving S-convex, monotone, or positive data. Cubic splines on quadrangulated 
rectangular grids have been successfully used to define monotone surfaces by requiring linearity of certain cross-boundary 
derivatives in Schumaker and Han (1997). An extension of Clough–Tocher macro-element allows for a construction of inter-
polating polynomial splines with surface tension controlled by adaptive polynomial degrees, (Costantini and Manni, 1999). 
An algorithm for convexity-preserving interpolation of scattered data based on choosing nodal gradients in feasible regions 
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is presented in Leung and Renka (1999). Cubic L1 smoothing spline on tensor-product grids in Gilsinn and Lavery (2002)
demonstrate promising shape-preserving behavior. An energy functional alternative to the one used in Gilsinn and Lavery
(2002) is tested in Witzgall et al. (2006) over Clough–Tocher splits of general irregular triangulations. The ideas of �1 mini-
mization in Lavery (2001) are adapted for general scattered data triangulations and, compared to thin-plate minimal energy 
and penalized least squares solutions, experiments demonstrate superior shape-preserving properties of the L1 splines in 
Lai and Wenston (2004). Iterative knot insertion algorithm generating a sequence of shape-preserving approximants is given 
in Kuijt and Damme (2001). In Schumaker and Speleers (2011) a search for a convex spline solution is formulated as a 
quadratic programming problem where convexity is enforced by including appropriate side conditions on the coefficients 
of the spline. Rational bi-quadratic splines preserving the shape of 3D positive and convex data are used in Hussain et al.
(2011).

Often, researches make global assumptions about the shape of given data, i.e. monotonicity, positivity or convexity, 
and design algorithms for constructing surfaces preserving the particular feature globally. Many methods are based on a 
variational approach (Utreras, 1985; Kouibia and Pasadas, 2003; Lai and Meile, 2015; Gilsinn and Lavery, 2002; Lai and 
Wenston, 2004; Witzgall et al., 2006; Schumaker and Speleers, 2011) resulting either in a large system of equations or an 
iterative algorithm.

Constructions based on local information and leading to computationally attractive local schemes have been successfully 
employed as well, see for example (Schumaker and Speleers, 2010; Costantini and Manni, 1991, 1999; Manni, 2001). Macro-
element spaces have been extensively used in development of shape-preservation methods, see for example (Willemans and 
Dierckx, 1994, 1995; Schmidt, 1999; Li, 1999; Lai, 2000; Carnicer et al., 2009).

In this paper we develop a local approach to shape-preservation. In fact, the goal of the construction is to follow local 
changes in data, and shape-preservation allows us to do so without overshooting.

Let � be a triangulation of the domain � with function values given at the vertices of �. There are some connected 
subsets of � on which the data are positive, and others, where the data are monotone and/or convex. What we claim and 
prove is that, if on a subset D of � the given vertex data is monotone (convex or positive), then for every 0 < λ < 1/6 there 
exists a set Dλ ⊂ D on which the constructed spline Sλ is monotone (convex or positive), and limλ→0 Dλ = D .

A C1 cubic spline is a popular choice for many interpolation/approximation problems. Polynomials of relatively low 
degree are well understood, and many spline tools, such as some macro-elements, for example, are specifically designed for 
C1 cubic splines. Spline theory suggests that some of the C1 conditions across the edges of a type I uniform triangulation 
are too restrictive, and one will have a problem controlling a cubic spline constructed over � due to these restrictions. 
A single coefficient may affect the spline over the rest of the triangles. There are various macro-element spaces that remedy 
this problem: after a refinement each coefficient has a finite number of triangles “around” it to control. What we suggest 
is not, strictly speaking, a refinement of the given �, since it does not preserve its edges, nor does it preserve all of its 
vertices. It is a refinement of � in a sense that the new triangulation �̃ consists of many more triangles than �, and the 
geometry and arrangements of these triangles are intimately connected with the original geometry of �. A parameter λ
controls the size of triangles, and there is more than one �̃ that works (take any 0 < λ < 1/6). This parameter affects the 
final look of the spline surface, however the surface is shape-preserving for any value of the parameter in the given range.

The constructed spline satisfies many attractive properties and has a few limitations. First of all, a triangulation � is not 
a triangulation of a scattered data set, it is a type I triangulation. Second, the constructed spline interpolates values of a 
piece-wise linear function, L, at locations other than vertices, while traditionally we seek splines interpolating data at the 
vertices of �. Finally, as an approximation to a piece-wise linear interpolant, the spline produced by the proposed method 
has regions of flatness, and this feature may limit practical applications of the construction. To minimize regions of flatness 
larger values of λ must be used. In fact, preliminary testing demonstrates that the case λ = 1/6 has similar shape-preserving 
properties. Since �̃ in this case is significantly different, details of this construction and corresponding proofs will have to 
be reported else-where. Otherwise (if larger λ’s are not satisfactory), it is not too difficult to see that ideas presented here 
can be used in combination with other spline constructions, extended to parametric surfaces, used on parts of domains, etc.

In Section 2 we present detailed construction of �̃. In Section 3 we describe how the coefficients of the spline are 
computed. We study linearity, positivity, monotonicity, convexity of the spline in Section 4, using results in Lai and Schu-
maker (2007) to connect the behavior of a BB-polynomial to its coefficients. In Section 5, we discuss numerical experiments 
performed with shape-preserving splines, and follow up with conclusions in Section 6.

2. Repartitioning a type I uniform triangulation

Let � be a type I uniform triangulation of a planar convex domain � with the vertices forming a set V , and let �̃ denote 
the new triangulation. Divide triangles of � into two groups, as marked by 1 and 2 in Fig. 1, left (there are two choices 
for grouping, the key is to alternate triangles from different groups). Fix 0 < λ < 1/6 and associate a weight w = λ with 
triangles marked by 1, and a weight w = 2λ with triangles marked by 2. In every triangle τ (i) ∈ � with vertices v1, v2, v3
define three points

w(i)
1 = (1 − 2w)v1 + w v2 + w v3,

w(i)
2 = w v1 + (1 − 2w)v2 + w v3,



Download English Version:

https://daneshyari.com/en/article/441111

Download Persian Version:

https://daneshyari.com/article/441111

Daneshyari.com

https://daneshyari.com/en/article/441111
https://daneshyari.com/article/441111
https://daneshyari.com

