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Barycentric coordinates are commonly used to represent a point inside a polygon as an 
affine combination of the polygon’s vertices and to interpolate data given at these vertices. 
While unique for triangles, various generalizations to arbitrary simple polygons exist, each 
satisfying a different set of properties. Some of these generalized barycentric coordinates 
do not have a closed form and can only be approximated by piecewise linear functions. In 
this paper we show that subdivision can be used to refine these piecewise linear functions 
without losing the key barycentric properties. For a wide range of subdivision schemes, 
this generates a sequence of piecewise linear coordinates which converges to non-negative 
and C1 continuous coordinates in the limit. The power of the described approach comes 
from the possibility of evaluating the C1 limit coordinates and their derivatives directly. We 
support our theoretical results with several examples, where we use Loop or Catmull–Clark 
subdivision to generate C1 coordinates, which inherit the favourable shape properties of 
harmonic coordinates or the small support of local barycentric coordinates.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Suppose we are given a planar n-sided simple polygon � ⊂ R
2 with n ≥ 3 vertices v1, . . . , vn ∈ R

2. For any p ∈ R
2, the 

values[
b1(p), . . . ,bn(p)

] = b(p) ∈ R
n

are called barycentric coordinates of p with respect to �, if
n∑

i=1

bi(p) = 1 and
n∑

i=1

bi(p)vi = p. (1)

Non-negativity is sometimes mentioned as an additional condition (Floater et al., 2006), but since this precludes the exis-
tence of barycentric coordinates at points outside the convex hull of the vertices vi , we prefer to consider the conditions 
in (1) as the defining properties and regard non-negativity as a desirable property only.

It is well known (Möbius, 1827) that the barycentric coordinates of p are unique for n = 3, when � is a triangle, and they 
are non-negative if and only if p ∈ � in this case. Instead, for n > 3 the conditions in (1) describe an (n − 3)-dimensional 
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affine subspace of Rn from which b(p) can be chosen. For example, Waldron (2011) suggests to consider barycentric co-
ordinates with minimal �2-norm and derives an explicit formula for computing them. He further shows that these affine 
barycentric coordinates are non-negative in a convex region that contains the barycentre v̄ = (v1 + · · · + vn)/n of �. Another 
example are Floater’s shape preserving coordinates (Floater, 1997) which are well-defined and non-negative for any p in the 
kernel of � and have been used successfully for mesh parameterization (Floater, 1997) and morphing (Floater and Gotsman, 
1999).

Both applications rely on pointwise barycentric coordinates, in the sense that b(p) with the properties in (1) must be 
determined for a single point p in the kernel of some polygon �. Instead, other applications, like geometric modelling (Loop 
and DeRose, 1989), colour interpolation (Meyer et al., 2002), rendering (Hormann and Tarini, 2004), shape deformation (Ju 
et al., 2005), and image warping (Warren et al., 2007), require barycentric coordinates for all p ∈ � and consider b(p) as 
a function of p over �. In this setting, the individual barycentric coordinate functions bi: � → R must satisfy the Lagrange 
property

bi(v j) = δi j =
{

1, if i = j,
0, otherwise, i, j = 1, . . . ,n (2)

in addition to the defining conditions in (1), so that the function f : � →R
d with

f (p) =
n∑

i=1

bi(p) f i (3)

interpolates the data f1, . . . , fn ∈ R
d at the vertices v1, . . . , vn . Most applications further expect the barycentric coordinate 

functions to be smooth, so that the barycentric interpolant f in (3) is C1 or even C2 continuous. And for some applications 
it is crucial that the coordinates are non-negative, because this guarantees that the interpolated values f (p) are contained 
in the convex hull of the data.

1.1. Related work

Wachspress (1975) was the first to describe a construction of rational barycentric coordinate functions for convex poly-
gons in the context of generalized finite element methods, but these Wachspress coordinates are not well-defined for arbitrary 
simple polygons. The same holds for discrete harmonic coordinates, which arise from the classical piecewise linear finite el-
ement approximation to Laplace’s equation (Strang and Fix, 2008) and have been applied for computing discrete minimal 
surfaces (Pinkall and Polthier, 1993) and mesh parameterization (Eck et al., 1995). Mean value coordinates (Floater, 2003)
overcome this drawback, as they are well-defined even for sets of nested simple polygons and for any p ∈ R

2 (Hormann 
and Floater, 2006). However, mean value coordinates can be negative inside concave polygons, and the same is true for met-
ric (Sukumar and Malsch, 2006), moving least squares (Manson and Schaefer, 2010), Poisson (Li and Hu, 2013), and cubic mean 
value coordinates (Li et al., 2013). Positivity inside arbitrary simple polygons is guaranteed by positive mean value (Lipman 
et al., 2007) and positive Gordon–Wixom coordinates (Manson et al., 2011), but both constructions deliver only C0 continuous 
coordinate functions.

All the aforementioned constructions provide closed-form coordinates, which can be evaluated exactly for any p ∈ � in a 
finite number of steps. At the same time, neither of these coordinates are smooth and positive inside non-convex polygons. 
So far the only barycentric coordinates known to have both properties are the harmonic (Joshi et al., 2007), maximum 
entropy (Hormann and Sukumar, 2008), and local barycentric coordinates (Zhang et al., 2014), but they all are computational 
coordinates in the sense that they lack a closed-form expression and must be treated numerically.

For example, harmonic coordinates can be approximated by using the complex variable boundary element method (Weber 
and Gotsman, 2010, Sec. 6.1) or the method of fundamental solutions (Martin et al., 2008, Sec. 5). The advantage of both 
approaches is that the resulting coordinates are smooth and harmonic and can be written in closed form after initially 
solving a rather small but dense linear system, but they only approximate the piecewise linear boundary conditions and 
thus do not satisfy the Lagrange property.

Another common strategy for computing harmonic coordinates (Eck et al., 1995; Joshi et al., 2007) is first to create 
a dense triangulation of �, then to fix the barycentric coordinates of the boundary vertices according to the Lagrange 
property (2) and such that the coordinates are linear along the edges of �, and finally to determine the coordinates at the 
interior vertices using the standard finite element discretization of the Laplace equation with Dirichlet boundary conditions. 
This approach is quite efficient, because it only requires solving a sparse linear system, but the resulting coordinate functions 
are merely piecewise linear approximations of the true harmonic coordinates. Local barycentric coordinates are approximated 
similarly, except that computing the coordinates at the interior vertices is more involved as it leads to a convex optimization 
problem with a non-smooth target function (Zhang et al., 2014, Sec. 4). However, the advantage of the resulting coordinate 
functions is that their support is smaller than the support of harmonic coordinate functions.

In both cases a global problem is solved to determine the barycentric coordinates for all interior vertices simultaneously. 
In contrast, maximum entropy coordinates are computed for any p ∈ � by solving a local convex optimization problem, 
which in turn can be done very efficiently with Newton’s method (Hormann and Sukumar, 2008, Sec. 5).
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