The inverse of a rational bilinear mapping

CrossMark

Michael S. Floater
Department of Mathematics, University of Oslo, PO Box 1053, Blindern, 0316 Oslo, Norway

ARTICLE INFO

Article history:

Received 5 November 2014
Received in revised form 7 January 2015
Accepted 8 January 2015
Available online 20 January 2015

Keywords:

Bilinear mappings
Inverse mappings
Rational coordinates
Barycentric coordinates

Abstract

We study the problem of inverting rational bilinear mappings, which leads to a oneparameter family of generalized barycentric coordinates for quadrilaterals, including Wachspress coordinates as a special case.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In a recent paper, Sederberg and Zheng (2015) studied rational bilinear mappings from the unit square to a convex quadrilateral, and their inverses. Such mappings have played an important role in computer graphics and geometric design (Wolberg, 1990). If $P \subset \mathbb{R}^{2}$ is the quadrilateral, with vertices $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ in \mathbb{R}^{2}, as in Fig. 1, and weights w_{1}, w_{2}, w_{3}, $w_{4}>0$ are chosen, the mapping

$$
\mathbf{r}(s, t):=\frac{(1-s)(1-t) w_{1} \mathbf{v}_{1}+s(1-t) w_{2} \mathbf{v}_{2}+s t w_{3} \mathbf{v}_{3}+(1-s) t w_{4} \mathbf{v}_{4}}{(1-s)(1-t) w_{1}+s(1-t) w_{2}+s t w_{3}+(1-s) t w_{4}}
$$

is a bijection $\mathbf{r}:[0,1] \times[0,1] \rightarrow P$. This can be seen from the fact that for a fixed s in $[0,1], \mathbf{r}$ is a line segment connecting a point on the edge $\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right.$] to a point on $\left[\mathbf{v}_{4}, \mathbf{v}_{3}\right]$, and as s increases from 0 to 1 , the convexity of P ensures that these line segments cover every point of P once only. Thus \mathbf{r} has an inverse and for any point $\mathbf{x} \in P$, we can solve

$$
\begin{equation*}
\mathbf{r}(s, t)=\mathbf{x} \tag{1}
\end{equation*}
$$

uniquely for s and t in $[0,1]$. Sederberg and Zheng (2015) derived a condition on the weights that makes the inversion particularly simple. For $i=1,2,3,4$, let C_{i} denote the triangle area,

$$
C_{i}=A\left(\mathbf{v}_{i-1}, \mathbf{v}_{i}, \mathbf{v}_{i+1}\right),
$$

where vertices are indexed cyclically, $\mathbf{v}_{i+4}=\mathbf{v}_{i}, i \in \mathbb{Z}$. They showed that if

$$
\begin{equation*}
\frac{w_{1} w_{3}}{w_{2} w_{4}}=\frac{C_{1} C_{3}}{C_{2} C_{4}} \tag{2}
\end{equation*}
$$

then s and t are rational functions of \mathbf{x}.

[^0]http://dx.doi.org/10.1016/j.cagd.2015.01.002
0167-8396/© 2015 Elsevier B.V. All rights reserved.

Fig. 1. Convex quadrilateral.
In this short note we firstly point out that under condition (2), s and t can be obtained from the area form of Wachspress' rational coordinates for convex polygons. Secondly, we derive a solution for s and t for arbitrary weights w_{i}. From this general solution we obtain generalized barycentric coordinates for P that do not seem to have been studied previously. They form a one-parameter family of coordinates, including Wachspress coordinates as a special case.

2. Wachspress coordinates

Wachspress developed rational barycentric coordinates for convex polygons in (Wachspress, 1975). The quadrilateral case has been studied in (Gout, 1979) and (Dahmen et al., 2000). Meyer et al. (2002) found a formula for the coordinates in terms of triangle areas, which for the quadrilateral P means that $\mathbf{x} \in P$ can be expressed as

$$
\begin{equation*}
\mathbf{x}=\frac{C_{1} A_{2} A_{3} \mathbf{v}_{1}+C_{2} A_{3} A_{4} \mathbf{v}_{2}+C_{3} A_{4} A_{1} \mathbf{v}_{3}+C_{4} A_{1} A_{2} \mathbf{v}_{4}}{C_{1} A_{2} A_{3}+C_{2} A_{3} A_{4}+C_{3} A_{4} A_{1}+C_{4} A_{1} A_{2}} \tag{3}
\end{equation*}
$$

where, in addition to the triangle areas C_{i}, the A_{i} are also triangle areas,

$$
A_{i}=A_{i}(\mathbf{x})=A\left(\mathbf{x}, \mathbf{v}_{i}, \mathbf{v}_{i+1}\right)
$$

An example of weights w_{i} that satisfy condition (2) is $w_{i}=C_{i}$. In this case, we see that by dividing numerator and denominator of (3) by $\left(A_{4}+A_{2}\right)\left(A_{1}+A_{3}\right)$ the solution to (1) is

$$
s=\frac{A_{4}}{A_{4}+A_{2}}, \quad t=\frac{A_{1}}{A_{1}+A_{3}}
$$

For general weights satisfying (2), we can first multiply the numerator and denominator of (3) by w_{1} / C_{1} to express it as

$$
\mathbf{x}=\frac{A_{2} A_{3} w_{1} \mathbf{v}_{1}+\rho_{1} A_{3} A_{4} w_{2} \mathbf{v}_{2}+\rho_{1} \rho_{2} A_{4} A_{1} w_{3} \mathbf{v}_{3}+\rho_{2} A_{1} A_{2} w_{4} \mathbf{v}_{4}}{A_{2} A_{3} w_{1}+\rho_{1} A_{3} A_{4} w_{2}+\rho_{1} \rho_{2} A_{4} A_{1} w_{3}+\rho_{2} A_{1} A_{2} w_{4}}
$$

where

$$
\rho_{1}:=\frac{w_{1} C_{2}}{C_{1} w_{2}}, \quad \rho_{2}:=\frac{w_{1} C_{4}}{C_{1} w_{4}}
$$

and then we see that the solution to (1) under condition (2) is

$$
s=\frac{\rho_{1} A_{4}}{\rho_{1} A_{4}+A_{2}}, \quad t=\frac{\rho_{2} A_{1}}{\rho_{2} A_{1}+A_{3}}
$$

3. General solution

Consider now solving the inversion for arbitrary weights w_{i}. We can adapt the formula derived recently in (Floater, 2015) for the inverse of the bilinear mapping

$$
\begin{equation*}
\mathbf{p}(s, t):=(1-s)(1-t) \mathbf{v}_{1}+s(1-t) \mathbf{v}_{2}+s t \mathbf{v}_{3}+(1-s) t \mathbf{v}_{4} \tag{4}
\end{equation*}
$$

For any point $\mathbf{x} \in P$ the solution (s, t) to

$$
\begin{equation*}
\mathbf{p}(s, t)=\mathbf{x} \tag{5}
\end{equation*}
$$

can be expressed as follows. For $i=1,2,3,4$, define the vectors $\mathbf{d}_{i}=\mathbf{v}_{i}-\mathbf{x}$. Then (5) can be expressed as

$$
(1-s)(1-t) \mathbf{d}_{1}+s(1-t) \mathbf{d}_{2}+s t \mathbf{d}_{3}+(1-s) t \mathbf{d}_{4}=0
$$

Then, using the fact that

https://daneshyari.com/en/article/441150

Download Persian Version:

https://daneshyari.com/article/441150

Daneshyari.com

[^0]: th This paper has been recommended for acceptance by Thomas Sederberg.
 E-mail address: michaelf@math.uio.no.

