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We present a novel, deterministic, and efficient method to detect whether a given rational 
space curve is symmetric. By using well-known differential invariants of space curves, 
namely the curvature and torsion, the method is significantly faster, simpler, and more 
general than an earlier method addressing a similar problem (Alcázar et al., 2014b). To 
support this claim, we present an analysis of the arithmetic complexity of the algorithm 
and timings from an implementation in Sage.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The problem of detecting the symmetries of curves and surfaces has attracted the attention of many researchers through-
out the years, because of the interest from fields like Pattern Recognition (Boutin, 2000; Calabi et al., 1998; Huang and 
Cohen, 1996; Lebmeir and Richter-Gebert, 2008; Lebmeir, 2009; Suk and Flusser, 1993, 2005; Tarel and Cooper, 2000;
Taubin and Cooper, 1992; Weiss, 1993), Computer Graphics (Berner et al., 2008; Bokeloh et al., 2009; Lipman et al., 2010;
Martinet et al., 2006; Mitra et al., 2006; Podolak et al., 2006; Schnabel et al., 2008; Simari et al., 2006), and Com-
puter Vision (Alt et al., 1988; Brass and Knauer, 2004; Jiang et al., 1996; Li et al., 2008, 2010; Loy and Eklundh, 2006;
Tate and Jared, 2003; Sun and Sherrah, 1997). The introduction in Alcázar et al. (2014b) contains an extensive account of 
the variety of approaches used in the above references.

A common characteristic in most of these papers is that the methods focus on computing approximate symmetries 
more than exact symmetries, which is perfectly reasonable in many applications, where curves and surfaces often serve 
as merely approximate representations of a more complex shape. Some exceptions appear here: If the object to be con-
sidered is discrete (e.g. a polyhedron), or is described by a discrete object, like for instance a control polygon or a control 
polyhedron, then the symmetries can be determined exactly (Alt et al., 1988; Brass and Knauer, 2004; Jiang et al., 1996;
Li et al., 2008). Examples of the second class are Bézier curves and tensor product surfaces. Furthermore, in these cases 
the symmetries of the curve or surface follow from those of the underlying discrete object. Another exception appears in 
Lebmeir and Richter-Gebert (2008), where the authors provide a deterministic method to detect rotation symmetry of an 
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implicitly defined algebraic plane curve and to find the exact rotation angle and rotation center. The method uses a complex 
representation of the curve and is generalized in Lebmeir (2009) to detect mirror symmetry as well.

Rational curves are frequently used in Computer Aided Geometric Design and are the building blocks of NURBS curves. 
Compared to implicit curves, rational parametric curves are easier to manipulate and visualize. Space curves appear in a 
natural way when intersecting two surfaces, and they play an important role when dealing with special types of surfaces, 
often used in geometric modeling, like ruled surfaces, canal surfaces or surfaces of revolution, which are generated from a 
directrix or profile curve. Furthermore, in geometric modeling it is typical to use rational space curves as profile curves.

In this paper we address the problem of deterministically finding the symmetries of a rational space curve, defined by 
means of a proper parametrization. Notice that since we deal with a global object, i.e., the set of all points in the image of 
a rational parametrization, and not just a piece of it, the discrete approach from Alt et al. (1988), Brass and Knauer (2004), 
Jiang et al. (1996), Li et al. (2008) is not suitable here. Determining if a rational space curve is symmetric or not is useful in 
order to properly describe the topology of the curve (Alcázar and Díaz Toca, 2010). Furthermore, if the space curve is to be 
used for generating, for instance, a canal surface or a surface of revolution, certain symmetries of the curve will be inherited 
by the generated surface. Hence, for modeling purposes it can be interesting to know these symmetries in advance.

Recently, the problem of determining whether a rational plane or space curve is symmetric has been addressed in Alcázar
(2014), Alcázar et al. (2014a, 2014b) using a different approach. The common denominator in these papers is the following 
observation: If a rational curve is symmetric, i.e., invariant under a nontrivial isometry f , then this symmetry induces an-
other parametrization of the curve, different from the original parametrization. Assuming that the initial parametrization is 
proper (definition below), the second parametrization is also proper. Since two proper parametrizations of the same curve 
are related by a Möbius transformation (Sendra et al., 2008), determining the symmetries is reduced to finding this transfor-
mation, therefore translating the problem to the parameter space. This observation leads to algorithms for determining the 
symmetries of plane curves with polynomial parametrizations (Alcázar, 2014) and of plane and space curves with rational 
parametrizations (Alcázar et al., 2014b), although in the latter case of general space curves only involutions were considered. 
The more general problem of determining whether two rational plane curves are similar was considered in Alcázar et al.
(2014a).

In this paper we again employ the above observation, but in addition we now also use well-known differential invariants 
of space curves, namely the curvature and the torsion. The improvement over the method in Alcázar et al. (2014b) is 
threefold: First of all, we are now able to find all the symmetries of the curve instead of just the involutions. Secondly, 
the new algorithm is considerably faster and can efficiently handle even curves with high degrees and large coefficients in 
reasonable timings. Finally, the method is simpler to implement and requires fewer assumptions on the parametrization.

Some general facts on symmetries of rational curves are presented in Section 2. Section 3 provides an algorithm for 
checking whether a curve is symmetric. The determination of the symmetries themselves is addressed in Section 4. Finally, 
in Section 5 we report on the performance of the algorithm, by presenting a complexity analysis and providing timings for 
several examples, including a comparison with the curves tested in Alcázar et al. (2014b).

2. Symmetries of rational curves

Throughout the paper, we consider a rational space curve C ⊂ R
3, neither a line nor a circle, parametrized by a rational 

map

x : R ��� C ⊂ R
3, x(t) = (

x(t), y(t), z(t)
)
. (1)

The components x(t), y(t), z(t) of x are rational functions of t with rational coefficients, and they are defined for all but a 
finite number of values of t . Let the (parametric) degree m of x be the maximal degree of the numerators and denominators 
of the components x(t), y(t), z(t). Note that rational curves are irreducible. We assume that the parametrization (1) is proper, 
i.e., birational or, equivalently, injective except for perhaps finitely many values of t . This can be assumed without loss of 
generality, since any rational curve can quickly be properly reparametrized. For these claims and other results on properness, 
the interested reader can consult (Sendra et al., 2008) for plane curves and (Alcázar, 2012, §3.1) for space curves.

We recall some facts from Euclidean geometry (Coxeter, 1969). An isometry of R3 is a map f : R3 −→ R
3 preserving 

Euclidean distances. Any isometry f of R3 is linear affine, taking the form

f (x) = Q x + b, x ∈R
3, (2)

with b ∈ R
3 and Q ∈ R

3×3 an orthogonal matrix. In particular det( Q ) = ±1. Under composition, the isometries of R3

form the Euclidean group, which is generated by reflections, i.e., symmetries with respect to a plane, or mirror symmetries. An 
isometry is called direct when it preserves the orientation, and opposite when it does not. In the former case det( Q ) = 1, 
while in the latter case det( Q ) = −1. The identity map of R3 is called the trivial symmetry.

The classification of the nontrivial isometries of Euclidean space includes reflections (in a plane), rotations (about an 
axis), and translations, and these combine in commutative pairs to form twists, glide reflections, and rotatory reflections. 
Composing three reflections in mutually perpendicular planes through a point p yields a central inversion (also called central 
symmetry), with center p, i.e., a symmetry with respect to the point p. The particular case of rotation by an angle π is 
of special interest, and it is called a half-turn. Rotation symmetries are direct, while mirror and central symmetries are 
opposite.
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