Birational quadrilateral maps

CrossMark

Thomas W. Sederberg ${ }^{\mathrm{a}, *}$, Jianmin Zheng ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Department of Computer Science, Brigham Young University, Provo, UT 84602, USA
${ }^{\text {b }}$ School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore

A R T I CLE IN F O

Article history:

Received 9 August 2014
Received in revised form 3 November 2014
Accepted 4 November 2014
Available online 20 November 2014

Keywords:

Quadrilateral meshes
Birational map

Abstract

A generic planar quadrilateral defines a 2:1 bilinear map. We show that by assigning an appropriate weight to one vertex of any planar quadrilateral, we can create a map whose inverse is rational linear.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A planar quadrilateral with vertices $\mathbf{P}_{i j}=\left(x_{i j}, y_{i j}\right)$ defines a bilinear map

$$
\begin{equation*}
\mathbf{P}(s, t)=\mathbf{P}_{00} \bar{s} \bar{t}+\mathbf{P}_{10} s \bar{t}+\mathbf{P}_{01} \bar{s} t+\mathbf{P}_{11} s t \tag{1}
\end{equation*}
$$

where $\bar{s}=(1-s)$ and $\bar{t}=(1-t)$. If the quad is a trapezoid, the map is $1: 1$. Otherwise, the map is generally $2: 1$ and the inverse involves a square root (Wolberg, 1990). For point E in Fig. 1.a,

$$
s=\frac{x-4 y+36 \pm \sqrt{f(x, y)}}{24}, \quad t=\frac{-x+4 y+36 \pm \sqrt{f(x, y)}}{32}
$$

where $f(x, y)=x^{2}-8 x y+16 y^{2}-72 x-96 y+1296$. So \mathbf{E} has pre-images $(s, t)=\left(\frac{1}{3}, \frac{3}{4}\right)$ and $(s, t)=(2,2)$. Fig. 1.b shows that \mathbf{E} lies on two different t-isoparameter lines: $t=\frac{3}{4}$ and $t=2$.

This paper proves that assigning a weight $w_{i j}$ to one control point, the map defined by any non-degenerate quadrilateral can be forced to be generally $1: 1$ with a rational linear inverse.

For example, in Fig. 2.a we assign $w_{01}=\frac{5}{3}$ to the quad in Fig. 1. In this case, point \mathbf{E} lies on a single s - and t-isoparameter line. The inversion equations are $s=\frac{3 x-4 y}{26-4 y}$ and $t=\frac{2 y}{20-x}$ and the pre-image of \mathbf{E} is $(s, t)=\left(\frac{2}{5}, \frac{2}{3}\right)$. This is an example of a birational map, meaning that both the map and its inverse can be expressed as a polynomial divided by a polynomial.

[^0]
(a) Lines for $0 \leq t \leq 1$.

(b) Lines for $0 \leq t \leq 2$.

Fig. 1. Quadrilateral with t-isoparameter lines.

Fig. 2. With $w_{01}=\frac{5}{3}$. Both families of isoparameter lines form pencils.

2. Birational quadrilaterals

As illustrated in Fig. 2.a, birational quadrilateral maps are characterized by the fact that each family of isoparameter lines form a pencil, that is, they pivot about axis points \mathbf{A}_{s} and \mathbf{A}_{t}, respectively. We now show how those pencils can be created by assigning a single control point weight.

Given a triple $\mathbf{Q}=(a, b, c)$ of homogeneous projective coordinates, $\operatorname{Point}(\mathbf{O})$ denotes the point whose Cartesian coordinates are $(a / c, b / c)$ and $\operatorname{Line}(\mathbf{Q})$ denotes the line $a x+b y+c=0$. Given triples \mathbf{Q}_{1} and \mathbf{Q}_{2}, $\operatorname{Line}\left(\mathbf{Q}_{1}\right)$ and $\operatorname{Line}\left(\mathbf{Q}_{2}\right)$ intersect at $\operatorname{Point}\left(\mathbf{Q}_{1} \times \mathbf{Q}_{2}\right)$ and $\operatorname{Point}\left(\mathbf{Q}_{1}\right)$ and $\operatorname{Point}\left(\mathbf{Q}_{2}\right)$ lie on $\operatorname{Line}\left(\mathbf{Q}_{1} \times \mathbf{Q}_{2}\right)$. The projective coordinates robustly express the intersection of two parallel lines as a point at infinity, i.e., a point for which $c=0$.

If $\mathbf{Q}_{1} \cdot \mathbf{Q}_{2}=0, \operatorname{Point}\left(\mathbf{Q}_{1}\right)$ lies on $\operatorname{Line}\left(\mathbf{Q}_{2}\right)$. If $\mathbf{Q}(t)=(a(t), b(t), c(t))$ is a triple of polynomials, $\operatorname{Point}(\mathbf{Q}(t))$ is a rational curve and $\operatorname{Line}(\mathbf{Q}(t))$ is called a moving line (Sederberg et al., 1994), i.e., a line that moves as a function of t. Denoting $\mathbf{Q}_{i j}=\left(x_{i j}, y_{i j}, 1\right)$ and $\tilde{\mathbf{Q}}_{i j}=w_{i j} \mathbf{Q}_{i j}$,

$$
\begin{equation*}
\mathbf{Q}(s, t)=\operatorname{Point}\left(\tilde{\mathbf{Q}}_{00} \bar{s} \bar{t}+\tilde{\mathbf{Q}}_{10} s \bar{t}+\tilde{\mathbf{Q}}_{01} \bar{s} t+\tilde{\mathbf{Q}}_{11} s t\right) \tag{2}
\end{equation*}
$$

defines a rational bilinear map. In Fig. 2.b,

$$
\begin{align*}
& \mathbf{A}_{s}=\left(\tilde{\mathbf{Q}}_{00} \times \tilde{\mathbf{Q}}_{01}\right) \times\left(\tilde{\mathbf{Q}}_{10} \times \tilde{\mathbf{Q}}_{11}\right), \quad \mathbf{A}_{t}=\left(\tilde{\mathbf{Q}}_{00} \times \tilde{\mathbf{Q}}_{10}\right) \times\left(\tilde{\mathbf{Q}}_{01} \times \tilde{\mathbf{Q}}_{11}\right), \\
& \mathbf{B}_{s}(s)=\bar{s} \tilde{\mathbf{Q}}_{01}+s \tilde{\mathbf{Q}}_{11}, \quad \mathbf{C}_{s}(s)=\bar{s} \tilde{\mathbf{Q}}_{00}+s \tilde{\mathbf{Q}}_{10}, \\
& \mathbf{B}_{t}(t)=\bar{s} \tilde{\mathbf{Q}}_{10}+s \tilde{\mathbf{Q}}_{11}, \quad \mathbf{C}_{t}(t)=\bar{s} \tilde{\mathbf{Q}}_{00}+s \tilde{\mathbf{Q}}_{01} .
\end{align*}
$$

For a generic quadrilateral, the families of s - and t-isoparameter lines are $\operatorname{Line}\left(I_{s}(s)\right)$ and $\operatorname{Line}\left(I_{t}(t)\right)$, where

$$
I_{s}(s)=\mathbf{B}_{s}(s) \times \mathbf{C}_{s}(s), \quad I_{t}(t)=\mathbf{B}_{t}(t) \times \mathbf{C}_{t}(t)
$$

$\operatorname{Line}\left(I_{s}(s)\right)$ is a pencil with axis $\operatorname{Point}\left(\mathbf{A}_{s}\right)$ if $\mathbf{A}_{s} \cdot I_{s}(s) \equiv 0$. This implies

$$
\begin{align*}
& w_{01} w_{10} \mathbf{A}_{s} \cdot \mathbf{Q}_{01} \times \mathbf{Q}_{10}+w_{11} w_{00} \mathbf{A}_{s} \cdot \mathbf{Q}_{11} \times \mathbf{Q}_{00}=0 \quad \text { or } \\
& \frac{w_{00} w_{11}}{w_{01} w_{10}}=\frac{\mathbf{A}_{s} \cdot \mathbf{Q}_{01} \times \mathbf{Q}_{10}}{\mathbf{A}_{s} \cdot \mathbf{Q}_{00} \times \mathbf{Q}_{11}} \tag{4}
\end{align*}
$$

Likewise, $\operatorname{Line}\left(I_{t}(t)\right)$ is a pencil with axis $\operatorname{Point}\left(\mathbf{A}_{t}\right)$ if

$$
\begin{equation*}
\frac{w_{00} w_{11}}{w_{01} w_{10}}=\frac{\mathbf{A}_{t} \cdot \mathbf{Q}_{10} \times \mathbf{Q}_{01}}{\mathbf{A}_{t} \cdot \mathbf{Q}_{00} \times \mathbf{Q}_{11}} \tag{5}
\end{equation*}
$$

Letting $|A B C|$ denote $A \times B \cdot C$, and applying to (3) the identity

$$
(A \times B) \times(C \times D)=(A \cdot(B \times D)) C-(A \cdot(B \times C)) D
$$

(4) and (5) become equivalent to

https://daneshyari.com/en/article/441160

Download Persian Version:
https://daneshyari.com/article/441160

Daneshyari.com

[^0]: 动 This paper has been recommended for acceptance by Kai Hormann.

 * Corresponding author.

 E-mail addresses: tom@cs.byu.edu (T.W. Sederberg), ASJMZheng@ntu.edu.sg (J. Zheng).

