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We propose a general scheme for detecting critical locations (of dimension zero) of 
piecewise polynomial multivariate equation systems. Our approach generalizes previously 
known methods for locating tangency events or self-intersections, in contexts such as 
surface–surface intersection (SSI) problems and the problem of tracing implicit plane 
curves. Given the algebraic constraints of the original problem, we formulate additional 
constraints, seeking locations where the differential matrix of the original problem has a 
non-maximal rank. This makes the method independent of a specific geometric applica-
tion, as well as of dimensionality. Within the framework of subdivision based solvers, test 
results are demonstrated for non-linear systems with three and four unknowns.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and related work

The general problem of finding all solutions of algebraic equation systems in a given domain, arises in various contexts in 
Computer Aided Design (CAD), engineering, robotics, or whenever the geometry governing the problem can be mapped to 
(or represented by) a set of algebraic (non-linear in general) equations. The subdivision approach, exploiting properties of the 
Bernstein/B-spline basis functions, has been extensively investigated for several decades – introducing algorithms for finding 
roots of a univariate polynomial such as in Lane and Riesenfeld (1981), solutions of fully constrained multivariate systems 
(Sherbrooke and Patrikalakis, 1993; Elber and Kim, 2001 and more) as well as for under-constrained systems (Hanniel and 
Elber, 2007; Liang et al., 2008 and more). Typically, the generic methods used in advanced solvers to guarantee the topology 
of the solution set (number of roots, number of connected components, loops, closed surfaces, etc.) rely on some regularity 
(or transversality) assumptions which may slightly vary according to the application. However, topological guarantee near 
singular locations is treated separately, and is usually much more difficult to achieve (if at all).

Results and algorithms related to critical points detection are known, in various geometric contexts. In Grandine 
and Klein IV (1997), Hass et al. (2007), implicit planar curves which may admit self-intersections are traced. The self-
intersections are first identified as critical points of the underlying implicit function, f (x, y) = 0, namely the solutions of 
the fully determined system: ∇ f (x, y) = 0̄ ∈ R

2. A numerical method with topological guarantee for implicit planar curves 
is given in Burr et al. (2008), which also detects isolated singularities and computes their degrees, using the number of 
connected components of certain topological structure in the neighborhood of the singularity.
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Critical points in the context of curve-surface intersection and surface–surface intersection are identified as tangency 
events of the two parametric geometries involved. For example, in Hu et al. (1997), tangency events of a parametric curve 
r(t) and a parametric surface R(u, v), are found by adding an orthogonality condition: 〈r′(t), Ru(u, v) × R v(u, v)〉 = 0, to the 
original intersection requirement: r(t) = R(u, v). In a similar manner, the additional conditions for tangency events of two 
parametric surfaces R(u, v) and P (s, t), are formulated to require that the two normal vectors at the intersection point are 
collinear.

Further, the dynamic version of the surface–surface intersection problem (Chen, 2008; Chen et al., 2007) is another 
application where the detection of critical points is essential: as the parametric surfaces evolve continuously with respect 
to a third parameter (time/control variable), the critical points are the events where intersection curve components may 
appear/disappear/merge and split. These are the topological events, where the solution curves may undergo topological 
changes, and they are characterized by tangency events of the evolving surfaces. In Chen (2008), Chen et al. (2007), they 
are recognized as the locations where a specific projection mapping is degenerate. However, no general method to locate 
the critical points of a smooth function F : D ⊂R

n →R
k , k ≤ n is provided.

Critical points are also used to determine the topology of an iso-surface of the form f (x, y, z) = const, using established 
results on the classification of critical points from Morse theory. In Stander and Hart (2005), the critical points are found 
as the solutions of ∇ f (x, y, z) = 0̄ ∈ R

3. Each such point corresponds to a critical value of f . The topological change in the 
iso-surfaces, as the function values vary through the critical one, is then identified using the Hessian value at the singular 
location. Consequently, a topologically correct triangular mesh is interactively updated. Such concepts are also used in
Ni et al. (2004), where an appropriate Morse function is constructed on a polygonal mesh, such that its critical points can 
be optimized (their number can be controlled by the user). The critical points of the chosen function are then used to 
interrogate the topology of the mesh, and to separate it into disc-topology patches.

Other applications of critical point analysis arise in the context of bisector curves, offset curves and medial axis com-
putation (Seong et al., 2010; Muthuganapathy et al., 2011; Johnson and Cohen, 2009; Musuvathy, 2011). These methods 
use critical point analysis of certain distance functions to locate transition events in the required solution manifolds. To the 
best of our knowledge, there’s no (subdivision based) general method for finding the critical points of a smooth function 
F : D ⊂R

n →R
k , k ≤ n. Although critical point analysis is widely used, it is usually of a specific function, intimately related 

to the problem or application domain. Our approach assumes no knowledge of the underlying motivation that gave rise to 
the equation solving problem or its dimensions. This generality, however, also has its drawbacks, as we discuss in further 
detail in Section 4.

The rest of this paper is organized as follows: In Section 2, the method for detecting critical points is detailed. Section 3
provides test results, for several types of problems and dimensions. Finally, Section 4 concludes and discusses future work.

2. Critical points detection

Let F : D ⊂ R
n → R

k (k ≤ n), be a (piecewise) polynomial, at least C1 smooth, and given in a tensor product B-spline 
form. The vector valued function F is defined on the axis parallel, n dimensional compact box:

D = [a1,b1] × . . . × [an,bn],
which may formally be considered as a subset of an open set U ⊂ R

n on which F is defined and smooth. The scalar 
components of F are denoted by: F = ( f1, . . . , fk). In this section, we describe a method for finding the critical points of:

F (x̄) = 0̄, (1)

using a (subdivision based) multivariate constraint solver. First, recall that the differential of F at p ∈ D , denoted dF p , is the 
linear map, matrix representation of which has the partial derivatives of F evaluated at p as its elements:

[dF p]i j = ∂ f i

∂x j
(p).

The critical points of F are generally defined by the following (Do Carmo, 1976):

Definition 1. Given a differentiable map F : U ⊂ R
n → R

k , defined in an open set U of Rn , we say that p ∈ U is a critical 
point of F if the differential dF p : Rn → R

k is not a surjective (onto) mapping. The image F (p) ∈ R
k of a critical point is 

called a critical value of F . A point of Rk which is not a critical value is called a regular value of F .

Remark 2. We are not interested, typically, in all the critical points of F , but only in those that are solution points as well. 
However, as will be evident shortly, the proposed method can be easily adopted to find all the critical points, rather than 
only those that are solution points (i.e. belonging to the critical value 0̄ ∈ R

k).

Prior to proceeding to solution details, the following clarification is in order. The singularities (or critical points) we seek 
are of the solution manifold, implicitly represented by the underlying equations system. This is not to be confused with 
the input equations, which may admit discontinuities of their own, but are trivial to handle: Since we assume a B-spline 
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