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This paper considers the problem of G1 curve interpolation using a special type of discrete 
logarithmic spirals. A “logarithmic arc spline” is defined as a set of smoothly connected 
circular arcs. The arcs of a logarithmic arc spline have equal angles and the curvatures of 
the arcs form a geometric sequence. Given two points together with two unit tangents at 
the points, interpolation of logarithmic arc splines with a user specified winding angle is 
formulated into finding the positive solutions to a vector equation. A practical algorithm 
is developed for computing the solutions and construction of interpolating logarithmic arc 
splines. Compared to known methods for logarithmic spiral interpolation, the proposed 
method has the advantages of unbounded winding angles, simple offsets and NURBS 
representation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Spirals, which have monotone curvatures, find wide applications in the fields of fair shape modeling, highway route 
design or artistic pattern design, etc. (Meek and Walton, 1992; Wang et al., 2004; Xu and Mould, 2009; Meek et al., 2012). 
Particularly, the clothoid spiral (also known as the Euler spiral) whose curvature is a linear function of its arc length, has 
often been used as a primary tool for curve completion or fair shape modeling (Kimia et al., 2003; Zhou et al., 2012). 
Another popular spiral is the logarithmic spiral whose radius of curvature is a linear function of its arc length. The study 
of logarithmic spirals goes back to Descartes and Jacob Bernoulli (Davis, 1993). Logarithmic spirals have many elegant 
properties and can be used to model fair shapes as well as natural objects (Harary and Tal, 2011).

As a generalization of Euler spirals and logarithmic spirals, Miura (2006) proposed a general equation for log-aesthetic 
curves. By choosing different values for a particular parameter, one can define various spirals by the equation. Except for a 
few special cases like circles, evaluation of log-aesthetic curves depends on numerical integration or computation of special 
functions (Ziatdinov et al., 2012a). If boundary points and tangents are given first, parameters for an interpolating spiral are 
usually determined by solving nonlinear systems or by searching strategies (Coope, 1992; Miura, 2000; Yoshida and Saito, 
2006; Ziatdinov et al., 2012b).

Inspired by the fact that log-aesthetic curves are usually computed numerically or approximated by other types of 
curves such as polynomials or rational polynomials, one can construct interpolating spirals discretely or using polynomials 
directly (Baumgarten and Farin, 1997; Yoshida and Saito, 2009; Walton and Meek, 2013; Yoshida et al., 2013). Polynomials 
or rational polynomials that have approximate linear plots of log curvatures are quasi-log-aesthetic spirals. These spirals 
can be evaluated explicitly. However, these curves are not log-aesthetic spirals exactly and many quasi-log-aesthetic spirals 
have to be pieced together when a high accuracy of approximation is desired. Geometric Hermite interpolating curves with 
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minimal energy can generate fair shapes (Yong and Cheng, 2004), but the Euler spiral and the logarithmic spiral are of 
special interest in shape modeling.

In this paper we consider G1 Hermite interpolation by logarithmic arc splines. Our proposed algorithm is motivated by 
the equiangular property of logarithmic spirals and the high accuracy approximation of spirals by arc splines (Meek and 
Walton, 1999). By assuming that a logarithmic spiral is approximated by a sequence of smoothly connected circular arcs 
of equal angles and the curvatures or radii of curvatures of all arcs form a geometric sequence, we obtain a logarithmic 
arc spline. G1 Hermite interpolation by logarithmic arc splines can be formulated as solving the free parameters from a 
simple equation. All solutions to the equation can be obtained using an efficient numerical method. As opposed to previous 
approaches which assumed bounded winding angles and unique interpolating curves, we have no such restrictions and all 
interpolating curves to the given boundary data can be obtained efficiently. As offsets of circular arcs are circular arcs, the 
offsets of logarithmic arc splines are easy to compute. Logarithmic arc splines and their offsets can be represented by NURBS 
or transformed into curvature continuous curves conveniently (Yang, 2004). Therefore, the proposed curve can be used as 
an efficient tool for shape modeling and CNC machining.

The paper is structured as follows. Section 2 briefly reviews important properties of logarithmic spirals and proposes a 
definition of a logarithmic arc spline. Section 3 describes basic formulations of G1 curve interpolation by logarithmic arc 
splines. Theoretical analysis on the existence and algorithm steps for logarithmic arc spline interpolation are also presented. 
Several interesting examples are provided in Section 4, and they demonstrate the applicability of the proposed algorithm. 
Section 5 concludes the paper.

2. Logarithmic spiral and logarithmic arc spline

2.1. Basics of logarithmic spirals

A logarithmic spiral of which the pole lies at the origin can be represented by polar coordinates as

r(t) = r0eλt, r0 ∈ R
+, λ ∈R (1)

or, by Cartesian coordinates as

S(t) =
(

x(t)

y(t)

)
= r0eλt

(
cos(t)

sin(t)

)
. (2)

Particularly, S(t) will approach the pole when λt approaches −∞.
A logarithmic spiral arc can be defined by either of the above equations when the parameter t belongs to an interval 

[t1, t2]. The winding angle of the logarithmic spiral arc is obtained as φ = t2 − t1 when λ > 0 or φ = t1 − t2 when λ < 0. 
If the winding angle satisfies |φ| ≤ 2π , the spiral arc is also referred as a single-winding logarithmic spiral; otherwise, it is a 
multi-winding logarithmic spiral.

Logarithmic spiral has several distinguished properties which make it a powerful tool for shape modeling. The clear or 
easily proved properties are listed with no proof.

Property 2.1. The angle between any radial line and the tangent line that passes through the same point does not change when the 
point moves along the logarithmic spiral.

This property is also known as the equiangular property, which was first observed by Rene Descartes. In particular, the 
angle ϕ between the radial line and the tangent line is computed by λ = cotϕ , where λ is the parameter as in Eq. (1).

Property 2.2. Let S(t) be a logarithmic spiral, k ∈ Z
+ , the tangents at points S(t) or S(t + 2kπ) are parallel and the angle between the 

tangent direction and the chord S(t + 2kπ) − S(t) is acute.

Property 2.3. Let Pa and Pb be the endpoints of a logarithmic spiral arc, the curvature decreasing from Pa to Pb and the winding angle 
being less than 2π . Assume α and β are the unsigned angles between Pb − Pa and the tangent to the arc at Pa or between Pb − Pa and 
the tangent to the arc at Pb, respectively. It follows that α > β .

Proof. Without loss of generality we assume the logarithmic spiral is represented by Eq. (2) with λ > 0, and the endpoints 
of a logarithmic spiral arc are Pa = S(t) and Pb = S(t + τ ). If the winding angle τ is less than π , the logarithmic spiral arc 
is convex and short and the property holds based on Vogt’s theorem (Theorem 3.17 in Guggenheimer, 1977).

We prove α > β for π ≤ τ < 2π . Since 0 < α, β < π , we should only prove cosα < cosβ . From Eq. (2), we have

cosα = S(t + τ ) − S(t)

‖S(t + τ ) − S(t)‖ · S′(t)
‖S′(t)‖ = eλτ (λ cosτ + sinτ ) − λ√

1 + e2λτ − 2eλτ cosτ
√

1 + λ2

and
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